Normalized defining polynomial
\( x^{18} - 5 x^{17} + 29 x^{16} - 151 x^{15} + 546 x^{14} - 2050 x^{13} + 6552 x^{12} - 18629 x^{11} + 48459 x^{10} - 101029 x^{9} + 186392 x^{8} - 232526 x^{7} + 193707 x^{6} - 33264 x^{5} - 148113 x^{4} + 148993 x^{3} - 262653 x^{2} + 309165 x - 151967 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(165636102028037750762643320515237=13^{7}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{6}{13} a^{13} + \frac{1}{13} a^{12} + \frac{1}{13} a^{11} - \frac{3}{13} a^{10} + \frac{6}{13} a^{9} + \frac{5}{13} a^{8} - \frac{5}{13} a^{7} - \frac{5}{13} a^{6} - \frac{1}{13} a^{5} + \frac{3}{13} a^{4} - \frac{3}{13} a^{3} + \frac{3}{13} a^{2} + \frac{2}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{15} + \frac{4}{13} a^{13} - \frac{6}{13} a^{12} + \frac{3}{13} a^{11} + \frac{1}{13} a^{10} + \frac{2}{13} a^{9} - \frac{1}{13} a^{8} + \frac{4}{13} a^{7} - \frac{5}{13} a^{6} - \frac{3}{13} a^{5} + \frac{2}{13} a^{4} - \frac{2}{13} a^{3} - \frac{6}{13} a^{2} + \frac{2}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{16} + \frac{5}{13} a^{13} - \frac{1}{13} a^{12} - \frac{3}{13} a^{11} + \frac{1}{13} a^{10} + \frac{1}{13} a^{9} - \frac{3}{13} a^{8} + \frac{2}{13} a^{7} + \frac{4}{13} a^{6} + \frac{6}{13} a^{5} - \frac{1}{13} a^{4} + \frac{6}{13} a^{3} + \frac{3}{13} a^{2} - \frac{3}{13} a + \frac{1}{13}$, $\frac{1}{236630124173658236543656418431111232764370715581} a^{17} + \frac{4239182572437206227083120649571613697016015724}{236630124173658236543656418431111232764370715581} a^{16} + \frac{104912628307092510145522442895837790695326950}{18202317244127556657204339879316248674182362737} a^{15} + \frac{7768749765236588925832654670293324965552673099}{236630124173658236543656418431111232764370715581} a^{14} + \frac{112788692845053685915306774623079697533708213363}{236630124173658236543656418431111232764370715581} a^{13} + \frac{91855505618796193588806349266092157333792079751}{236630124173658236543656418431111232764370715581} a^{12} - \frac{39606756360977622108708202446842880932363789307}{236630124173658236543656418431111232764370715581} a^{11} + \frac{85014199764313338813216815300655414081398164205}{236630124173658236543656418431111232764370715581} a^{10} + \frac{26903053191364214012716138866323562367197864150}{236630124173658236543656418431111232764370715581} a^{9} - \frac{101278058731507559024415041823195909321203084920}{236630124173658236543656418431111232764370715581} a^{8} + \frac{64208586806937632480631414080190682306792002226}{236630124173658236543656418431111232764370715581} a^{7} + \frac{7650719255497355229699961094406545212904999784}{236630124173658236543656418431111232764370715581} a^{6} + \frac{76471672341837334611836846675689082216460069749}{236630124173658236543656418431111232764370715581} a^{5} - \frac{20706823327104554383773735325037285265530438642}{236630124173658236543656418431111232764370715581} a^{4} - \frac{22869926681277886266049644930714683333976714446}{236630124173658236543656418431111232764370715581} a^{3} - \frac{27239032721989714726710690599760300132026975480}{236630124173658236543656418431111232764370715581} a^{2} - \frac{79929397966684656847483678227001740798916989217}{236630124173658236543656418431111232764370715581} a + \frac{59905153788744706231743973018972838853903314923}{236630124173658236543656418431111232764370715581}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68296848.4183 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 9216 |
| The 88 conjugacy class representatives for t18n548 are not computed |
| Character table for t18n548 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1129 | Data not computed | ||||||