Normalized defining polynomial
\( x^{18} - 6 x^{17} + 20 x^{16} - 36 x^{15} + 38 x^{14} - 2 x^{13} - 54 x^{12} + 384 x^{11} - 1363 x^{10} + 4148 x^{9} - 6508 x^{8} + 170 x^{7} + 23741 x^{6} - 36270 x^{5} - 34892 x^{4} + 195188 x^{3} - 273668 x^{2} + 120296 x + 58024 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13584356571235485234285554696192=2^{24}\cdot 19^{7}\cdot 137^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{68} a^{16} + \frac{1}{17} a^{15} + \frac{1}{17} a^{14} - \frac{4}{17} a^{13} - \frac{3}{34} a^{12} + \frac{9}{34} a^{11} - \frac{7}{34} a^{10} - \frac{4}{17} a^{9} + \frac{9}{68} a^{8} - \frac{1}{2} a^{7} - \frac{2}{17} a^{6} + \frac{11}{34} a^{5} - \frac{3}{68} a^{4} + \frac{1}{17} a^{3} - \frac{1}{17} a^{2} - \frac{8}{17} a + \frac{1}{17}$, $\frac{1}{60284117662168649577627630559939982788292} a^{17} - \frac{2944168635122205153613373719848452289}{15071029415542162394406907639984995697073} a^{16} - \frac{454322536486980628016037825240035972305}{15071029415542162394406907639984995697073} a^{15} + \frac{4102830733687876007676686283633086222281}{30142058831084324788813815279969991394146} a^{14} - \frac{9394983090956448037031940485433369996795}{30142058831084324788813815279969991394146} a^{13} + \frac{12400799860989482682544847980489015003829}{30142058831084324788813815279969991394146} a^{12} + \frac{50431217108576406577698671561035300861}{1773062284181430869930224428233528905538} a^{11} + \frac{3601712778609618224022078705479183786909}{15071029415542162394406907639984995697073} a^{10} - \frac{7811481881446380924913268517338902229635}{60284117662168649577627630559939982788292} a^{9} - \frac{14745983604089288191837630323636149169511}{30142058831084324788813815279969991394146} a^{8} - \frac{1357736024364583999915293404819929571742}{15071029415542162394406907639984995697073} a^{7} + \frac{957302200801644610723340995283326632154}{15071029415542162394406907639984995697073} a^{6} + \frac{20167877347055649150258272374982426772745}{60284117662168649577627630559939982788292} a^{5} - \frac{661550270862473253880801529486616872554}{15071029415542162394406907639984995697073} a^{4} + \frac{1243104439456291937345762832712291632548}{15071029415542162394406907639984995697073} a^{3} - \frac{14292159611686112186333179954938700866627}{30142058831084324788813815279969991394146} a^{2} - \frac{7518896085101077201895474906127957332524}{15071029415542162394406907639984995697073} a - \frac{435490627954227798533413307418922911830}{15071029415542162394406907639984995697073}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5692528.18684 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18432 |
| The 54 conjugacy class representatives for t18n626 are not computed |
| Character table for t18n626 is not computed |
Intermediate fields
| 9.9.1128762254528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.18.64 | $x^{12} + 14 x^{11} + 12 x^{10} + 4 x^{9} + 10 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 16 x - 8$ | $4$ | $3$ | $18$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.4.0.1 | $x^{4} - x + 26$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 137.4.3.4 | $x^{4} + 3699$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 137.8.4.1 | $x^{8} + 975988 x^{4} - 2571353 x^{2} + 238138144036$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |