Normalized defining polynomial
\( x^{18} + 924 x^{12} - 3620 x^{9} + 26244 x^{6} - 87480 x^{3} - 78732 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1287805431371247745393996136448=2^{16}\cdot 3^{32}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{24} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{5}{12} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{24} a^{10} + \frac{1}{4} a^{4} + \frac{5}{12} a$, $\frac{1}{72} a^{11} + \frac{1}{12} a^{5} + \frac{17}{36} a^{2}$, $\frac{1}{216} a^{12} + \frac{1}{36} a^{6} + \frac{53}{108} a^{3}$, $\frac{1}{648} a^{13} + \frac{1}{108} a^{7} - \frac{55}{324} a^{4} + \frac{1}{3} a$, $\frac{1}{5832} a^{14} + \frac{1}{1944} a^{13} + \frac{1}{648} a^{12} - \frac{1}{216} a^{11} - \frac{1}{72} a^{10} + \frac{73}{972} a^{8} - \frac{35}{324} a^{7} + \frac{1}{108} a^{6} + \frac{317}{729} a^{5} - \frac{88}{243} a^{4} - \frac{55}{324} a^{3} + \frac{19}{108} a^{2} + \frac{7}{36} a + \frac{1}{3}$, $\frac{1}{104713262568} a^{15} + \frac{7839589}{3878268984} a^{12} - \frac{80160775}{34904420856} a^{9} + \frac{2429005387}{26178315642} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{57485513}{969567246} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{24646807}{71819796}$, $\frac{1}{314139787704} a^{16} + \frac{7839589}{11634806952} a^{13} - \frac{383627911}{26178315642} a^{10} + \frac{11155110601}{78534946926} a^{7} + \frac{1339379843}{5817403476} a^{4} + \frac{32563969}{107729694} a$, $\frac{1}{942419363112} a^{17} + \frac{309101}{5817403476} a^{14} - \frac{1}{1944} a^{13} - \frac{1}{648} a^{12} - \frac{80160775}{314139787704} a^{11} + \frac{1}{72} a^{10} + \frac{39277648007}{471209681556} a^{8} + \frac{35}{324} a^{7} - \frac{1}{108} a^{6} - \frac{2729571031}{5817403476} a^{5} + \frac{88}{243} a^{4} + \frac{55}{324} a^{3} + \frac{238692445}{646378164} a^{2} - \frac{7}{36} a - \frac{1}{3}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 159629939.02206567 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.1.108.1, 6.2.25625808.3, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ |
| 3.9.16.6 | $x^{9} + 6 x^{8} + 3 x^{3} + 18 x + 6$ | $9$ | $1$ | $16$ | $(C_9:C_3):C_2$ | $[3/2, 2, 13/6]_{2}$ | |
| 13 | Data not computed | ||||||