Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 48 x^{15} + 78 x^{14} - 108 x^{13} + 198 x^{12} - 576 x^{11} + 1674 x^{10} - 3780 x^{9} + 6498 x^{8} - 8208 x^{7} + 7614 x^{6} - 4860 x^{5} + 1782 x^{4} - 351 x^{2} + 162 x - 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11777310696798643575324672=2^{50}\cdot 3^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{11} + \frac{1}{3} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{36} a^{12} - \frac{1}{12} a^{8} + \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{72} a^{13} - \frac{1}{72} a^{12} - \frac{1}{24} a^{9} + \frac{1}{24} a^{8} - \frac{3}{8} a^{5} + \frac{3}{8} a^{4} + \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{144} a^{14} - \frac{1}{144} a^{12} + \frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{48} a^{6} - \frac{5}{16} a^{4} + \frac{5}{16} a^{2} - \frac{5}{16}$, $\frac{1}{144} a^{15} - \frac{1}{144} a^{13} + \frac{1}{144} a^{11} - \frac{1}{16} a^{9} - \frac{1}{48} a^{7} + \frac{17}{48} a^{5} - \frac{3}{16} a^{3} - \frac{5}{16} a$, $\frac{1}{432} a^{16} - \frac{1}{18} a^{10} - \frac{1}{12} a^{8} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2} + \frac{1}{16}$, $\frac{1}{47994336} a^{17} + \frac{30665}{47994336} a^{16} + \frac{349}{205104} a^{15} + \frac{6119}{3999528} a^{14} - \frac{48431}{7999056} a^{13} + \frac{4295}{3999528} a^{12} - \frac{60533}{7999056} a^{11} - \frac{274501}{3999528} a^{10} + \frac{42769}{2666352} a^{9} - \frac{8309}{166647} a^{8} + \frac{438125}{2666352} a^{7} - \frac{11937}{444392} a^{6} + \frac{17677}{68368} a^{5} + \frac{115019}{1333176} a^{4} + \frac{405663}{888784} a^{3} + \frac{29103}{444392} a^{2} - \frac{439477}{1777568} a - \frac{678603}{1777568}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1938173.05938 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$PSU(3,2)$ (as 18T35):
| A solvable group of order 72 |
| The 6 conjugacy class representatives for $PSU(3,2)$ |
| Character table for $PSU(3,2)$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 9.1.990677827584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.8.24.12 | $x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $Q_8$ | $[2, 3, 4]$ | |
| 2.8.24.12 | $x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $Q_8$ | $[2, 3, 4]$ | |
| 3 | Data not computed | ||||||