Normalized defining polynomial
\( x^{18} - 9 x^{17} + 24 x^{16} - 18 x^{15} - 54 x^{14} - 1404 x^{13} - 360 x^{12} + 9252 x^{11} - 40599 x^{10} - 90315 x^{9} - 155556 x^{8} + 165312 x^{7} - 357504 x^{6} - 622080 x^{5} - 626688 x^{4} + 884736 x^{3} - 1179648 x^{2} - 1769472 x - 786432 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(117561128126763835119847566016512=2^{16}\cdot 3^{33}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{7}{16} a^{3} - \frac{3}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{1}{32} a^{9} - \frac{3}{32} a^{8} - \frac{3}{16} a^{7} + \frac{3}{8} a^{6} - \frac{7}{16} a^{5} + \frac{9}{64} a^{4} - \frac{3}{64} a^{3} - \frac{3}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{256} a^{13} - \frac{1}{256} a^{12} - \frac{1}{128} a^{10} - \frac{35}{128} a^{9} + \frac{29}{64} a^{8} - \frac{13}{32} a^{7} - \frac{23}{64} a^{6} + \frac{9}{256} a^{5} + \frac{61}{256} a^{4} - \frac{19}{64} a^{3} - \frac{7}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{1024} a^{14} - \frac{1}{1024} a^{13} - \frac{1}{512} a^{11} - \frac{35}{512} a^{10} + \frac{29}{256} a^{9} - \frac{45}{128} a^{8} + \frac{105}{256} a^{7} + \frac{265}{1024} a^{6} + \frac{317}{1024} a^{5} + \frac{109}{256} a^{4} - \frac{7}{64} a^{3} + \frac{3}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{4096} a^{15} - \frac{1}{4096} a^{14} - \frac{1}{2048} a^{12} - \frac{35}{2048} a^{11} + \frac{29}{1024} a^{10} - \frac{45}{512} a^{9} + \frac{105}{1024} a^{8} + \frac{1289}{4096} a^{7} - \frac{707}{4096} a^{6} - \frac{403}{1024} a^{5} - \frac{7}{256} a^{4} - \frac{13}{64} a^{3} + \frac{7}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{1163264} a^{16} - \frac{61}{1163264} a^{15} + \frac{91}{290816} a^{14} - \frac{345}{581632} a^{13} - \frac{2215}{581632} a^{12} - \frac{8609}{290816} a^{11} + \frac{3945}{145408} a^{10} + \frac{12209}{290816} a^{9} - \frac{460007}{1163264} a^{8} + \frac{471521}{1163264} a^{7} - \frac{13437}{145408} a^{6} + \frac{14213}{72704} a^{5} - \frac{2791}{18176} a^{4} + \frac{39}{568} a^{3} - \frac{103}{568} a^{2} + \frac{17}{71} a + \frac{6}{71}$, $\frac{1}{868961856437114977813474036306957606739443712} a^{17} + \frac{200922090457841699357290820472538886863}{868961856437114977813474036306957606739443712} a^{16} - \frac{1283438094856049016752486647121698808429}{27155058013659843056671063634592425210607616} a^{15} - \frac{10565179302785235099374753875168845684683}{39498266201687044446067001650316254851792896} a^{14} - \frac{201878901100229306239153825536836566304979}{434480928218557488906737018153478803369721856} a^{13} + \frac{555462283146942266103439239289382794486989}{217240464109278744453368509076739401684860928} a^{12} - \frac{3162211562118139281850990366809832510339897}{108620232054639372226684254538369700842430464} a^{11} - \frac{13823737256870197593407264338696413470426087}{217240464109278744453368509076739401684860928} a^{10} - \frac{146094863957224238297309559521605972482228791}{868961856437114977813474036306957606739443712} a^{9} - \frac{197021508783402975006298389478500666312606899}{868961856437114977813474036306957606739443712} a^{8} - \frac{7203869532333125779443637616496162010840233}{19749133100843522223033500825158127425896448} a^{7} + \frac{75060979528394849007213393290039275700963}{1697191125853740191041941477162026575662976} a^{6} + \frac{6574764183990465166854051596483286385236257}{13577529006829921528335531817296212605303808} a^{5} + \frac{854147381100225496314159231024117030960815}{3394382251707480382083882954324053151325952} a^{4} + \frac{296909359956680098238651772773978516445731}{848595562926870095520970738581013287831488} a^{3} + \frac{59367520921041851380520459844190293580019}{212148890731717523880242684645253321957872} a^{2} - \frac{10668268751853769414551791009438878970095}{53037222682929380970060671161313330489468} a - \frac{4595443987186763815611104534908238585226}{13259305670732345242515167790328332622367}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2717691757.986842 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{57}) \), 3.1.108.1, 6.2.240010128.2, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||