Normalized defining polynomial
\( x^{18} - 4 x^{17} + 15 x^{16} - 48 x^{15} + 132 x^{14} - 319 x^{13} + 556 x^{12} - 800 x^{11} + 978 x^{10} - 1168 x^{9} + 1709 x^{8} - 2403 x^{7} + 2800 x^{6} - 2775 x^{5} + 2108 x^{4} - 1269 x^{3} + 646 x^{2} - 108 x + 8 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11431756166378830117885017=3^{6}\cdot 97^{3}\cdot 107^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{12} + \frac{2}{7} a^{10} + \frac{3}{7} a^{9} - \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{13} - \frac{1}{14} a^{10} + \frac{1}{7} a^{8} + \frac{1}{14} a^{7} - \frac{5}{14} a^{5} - \frac{3}{14} a^{4} - \frac{2}{7} a^{3} + \frac{1}{14} a^{2} - \frac{3}{14} a + \frac{3}{7}$, $\frac{1}{42} a^{14} + \frac{1}{42} a^{13} + \frac{1}{21} a^{12} - \frac{1}{14} a^{11} + \frac{13}{42} a^{10} + \frac{5}{21} a^{9} - \frac{17}{42} a^{8} - \frac{19}{42} a^{7} + \frac{17}{42} a^{6} + \frac{2}{21} a^{5} - \frac{5}{42} a^{4} + \frac{1}{6} a^{3} + \frac{3}{7} a^{2} + \frac{19}{42} a - \frac{2}{21}$, $\frac{1}{42} a^{15} + \frac{1}{42} a^{13} + \frac{1}{42} a^{12} - \frac{1}{21} a^{11} + \frac{5}{14} a^{10} + \frac{3}{14} a^{9} + \frac{5}{21} a^{8} + \frac{3}{7} a^{7} + \frac{5}{42} a^{6} + \frac{1}{14} a^{5} + \frac{17}{42} a^{3} + \frac{13}{42} a^{2} + \frac{13}{42} a + \frac{5}{21}$, $\frac{1}{7056} a^{16} - \frac{1}{294} a^{15} + \frac{83}{7056} a^{14} + \frac{29}{1764} a^{13} - \frac{2}{147} a^{12} - \frac{109}{2352} a^{11} - \frac{7}{18} a^{10} + \frac{47}{252} a^{9} - \frac{1051}{3528} a^{8} + \frac{83}{882} a^{7} + \frac{677}{7056} a^{6} - \frac{2735}{7056} a^{5} + \frac{10}{21} a^{4} + \frac{2981}{7056} a^{3} + \frac{4}{9} a^{2} - \frac{2929}{7056} a - \frac{767}{3528}$, $\frac{1}{20825380786629888} a^{17} - \frac{599294507437}{10412690393314944} a^{16} + \frac{198269790001739}{20825380786629888} a^{15} - \frac{6384152227207}{1487527199044992} a^{14} - \frac{10235440638001}{1301586299164368} a^{13} + \frac{281425181105419}{6941793595543296} a^{12} + \frac{537485731071755}{10412690393314944} a^{11} + \frac{43205618509379}{247921199840832} a^{10} - \frac{1379217810796537}{3470896797771648} a^{9} - \frac{814579306316395}{5206345196657472} a^{8} + \frac{778158970693543}{6941793595543296} a^{7} + \frac{103397981072069}{6941793595543296} a^{6} + \frac{5184817530185843}{10412690393314944} a^{5} - \frac{1913972566048411}{20825380786629888} a^{4} + \frac{57737978373935}{1156965599257216} a^{3} - \frac{2748442179747811}{6941793595543296} a^{2} + \frac{344559584184307}{5206345196657472} a + \frac{1808765451508931}{5206345196657472}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 178327.014477 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3\times S_4$ (as 18T111):
| A solvable group of order 288 |
| The 30 conjugacy class representatives for $C_2\times S_3\times S_4$ |
| Character table for $C_2\times S_3\times S_4$ is not computed |
Intermediate fields
| 3.1.107.1, 3.3.321.1, 6.2.9994977.1, 9.3.3539149227.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 97 | Data not computed | ||||||
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |