Normalized defining polynomial
\( x^{18} - 3 x^{17} - 7 x^{16} + 20 x^{15} + 45 x^{14} - 443 x^{13} + 1134 x^{12} - 1479 x^{11} + 175 x^{10} + 2090 x^{9} - 2977 x^{8} + 831 x^{7} + 1899 x^{6} - 2660 x^{5} + 1110 x^{4} - 640 x^{3} + 280 x^{2} - 480 x + 20 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11351585665720125000000000000=2^{12}\cdot 3^{8}\cdot 5^{15}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{6} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{11} - \frac{1}{2} a^{10} + \frac{1}{6} a^{7} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{14} + \frac{1}{4} a^{11} - \frac{1}{3} a^{10} + \frac{1}{12} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} + \frac{1}{4} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{12} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{4399956} a^{16} - \frac{25661}{4399956} a^{15} + \frac{25}{199998} a^{14} - \frac{163391}{4399956} a^{13} - \frac{119257}{4399956} a^{12} - \frac{621829}{2199978} a^{11} + \frac{5861}{35772} a^{10} + \frac{949555}{4399956} a^{9} - \frac{1028561}{2199978} a^{8} - \frac{160391}{399996} a^{7} + \frac{499747}{1466652} a^{6} - \frac{814469}{2199978} a^{5} - \frac{755423}{2199978} a^{4} - \frac{34942}{1099989} a^{3} - \frac{157853}{1099989} a^{2} + \frac{120557}{1099989} a + \frac{299308}{1099989}$, $\frac{1}{14893532123001712676892} a^{17} + \frac{73441387685535}{1654836902555745852988} a^{16} - \frac{84228955527149209837}{2482255353833618779482} a^{15} + \frac{11101300018077798091}{827418451277872926494} a^{14} - \frac{514558475573937528521}{14893532123001712676892} a^{13} + \frac{478541608267056655081}{7446766061500856338446} a^{12} - \frac{2953268574596053633739}{7446766061500856338446} a^{11} + \frac{2533677943887537547327}{14893532123001712676892} a^{10} + \frac{3703106631942880240013}{7446766061500856338446} a^{9} - \frac{109608772747220926747}{1241127676916809389741} a^{8} - \frac{4467936919404115744481}{14893532123001712676892} a^{7} - \frac{647111711077479946864}{3723383030750428169223} a^{6} - \frac{920167461189600596645}{4964510707667237558964} a^{5} - \frac{900883223974351668559}{2482255353833618779482} a^{4} + \frac{2727286255051732066999}{7446766061500856338446} a^{3} + \frac{675528246489319088807}{7446766061500856338446} a^{2} + \frac{1663343208270350643530}{3723383030750428169223} a - \frac{49109712408675667873}{3723383030750428169223}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7580353.718580581 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.300.1, 3.1.3675.1, 3.1.14700.1, 3.1.588.1, 6.2.450000.1, 6.2.1080450000.1, 6.2.67528125.1, 6.2.43218000.1, 9.1.9529569000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 7 | Data not computed | ||||||