Properties

Label 18.2.10720765125...0000.1
Degree $18$
Signature $[2, 8]$
Discriminant $2^{12}\cdot 3^{6}\cdot 5^{15}\cdot 7^{6}$
Root discriminant $16.75$
Ramified primes $2, 3, 5, 7$
Class number $1$
Class group Trivial
Galois group $C_2\times S_3^2$ (as 18T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 10, -45, 103, -85, -145, 545, -885, 985, -820, 530, -285, 145, -85, 55, -32, 15, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 5*x^17 + 15*x^16 - 32*x^15 + 55*x^14 - 85*x^13 + 145*x^12 - 285*x^11 + 530*x^10 - 820*x^9 + 985*x^8 - 885*x^7 + 545*x^6 - 145*x^5 - 85*x^4 + 103*x^3 - 45*x^2 + 10*x - 1)
 
gp: K = bnfinit(x^18 - 5*x^17 + 15*x^16 - 32*x^15 + 55*x^14 - 85*x^13 + 145*x^12 - 285*x^11 + 530*x^10 - 820*x^9 + 985*x^8 - 885*x^7 + 545*x^6 - 145*x^5 - 85*x^4 + 103*x^3 - 45*x^2 + 10*x - 1, 1)
 

Normalized defining polynomial

\( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 55 x^{14} - 85 x^{13} + 145 x^{12} - 285 x^{11} + 530 x^{10} - 820 x^{9} + 985 x^{8} - 885 x^{7} + 545 x^{6} - 145 x^{5} - 85 x^{4} + 103 x^{3} - 45 x^{2} + 10 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10720765125000000000000=2^{12}\cdot 3^{6}\cdot 5^{15}\cdot 7^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.75$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} - \frac{1}{3} a^{8} - \frac{2}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{992593593} a^{17} + \frac{25058032}{992593593} a^{16} + \frac{91430975}{992593593} a^{15} + \frac{17296428}{110288177} a^{14} - \frac{12031408}{992593593} a^{13} - \frac{37043512}{992593593} a^{12} + \frac{321074807}{992593593} a^{11} + \frac{189260956}{992593593} a^{10} + \frac{32628169}{110288177} a^{9} + \frac{56279974}{992593593} a^{8} + \frac{5173136}{18728181} a^{7} + \frac{389975924}{992593593} a^{6} + \frac{258229870}{992593593} a^{5} + \frac{4137460}{330864531} a^{4} + \frac{454355071}{992593593} a^{3} + \frac{473285254}{992593593} a^{2} + \frac{279664505}{992593593} a - \frac{53424569}{110288177}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7575.010436613877 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_3^2$ (as 18T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 18 conjugacy class representatives for $C_2\times S_3^2$
Character table for $C_2\times S_3^2$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.300.1, 3.1.175.1, 6.2.450000.1, 6.2.153125.1, 9.1.9261000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.6.5.1$x^{6} - 5$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
5.12.10.1$x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$$6$$2$$10$$D_6$$[\ ]_{6}^{2}$
$7$7.6.0.1$x^{6} + 3 x^{2} - x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
7.12.6.1$x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$