Normalized defining polynomial
\( x^{18} - 18 x^{16} - 12 x^{15} + 117 x^{14} + 156 x^{13} - 196 x^{12} - 432 x^{11} - 264 x^{10} - 1344 x^{9} - 504 x^{8} + 4752 x^{7} + 6180 x^{6} + 3600 x^{5} + 10128 x^{4} - 1408 x^{3} - 5760 x^{2} + 1536 x + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1052719060501925259206838976512=2^{49}\cdot 3^{18}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{48} a^{12} - \frac{1}{24} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} + \frac{1}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{48} a^{13} - \frac{1}{24} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{12} a^{7} + \frac{1}{8} a^{5} - \frac{5}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{48} a^{14} + \frac{1}{48} a^{11} - \frac{1}{16} a^{10} - \frac{1}{12} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{12} a^{5} - \frac{3}{8} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{288} a^{15} + \frac{1}{144} a^{12} - \frac{1}{32} a^{11} + \frac{1}{24} a^{10} - \frac{1}{48} a^{9} - \frac{1}{16} a^{8} + \frac{5}{48} a^{7} + \frac{1}{6} a^{6} + \frac{1}{8} a^{5} + \frac{11}{24} a^{4} + \frac{5}{12} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{576} a^{16} - \frac{1}{96} a^{14} - \frac{1}{144} a^{13} - \frac{1}{192} a^{12} - \frac{1}{48} a^{11} + \frac{1}{24} a^{10} + \frac{1}{24} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{5}{24} a^{6} + \frac{11}{48} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{4931682844216506875136} a^{17} - \frac{1094477402051638873}{2465841422108253437568} a^{16} + \frac{1068563913944588717}{2465841422108253437568} a^{15} - \frac{608262441808138429}{308230177763531679696} a^{14} + \frac{45303893990568399605}{4931682844216506875136} a^{13} - \frac{21488663515078324583}{2465841422108253437568} a^{12} - \frac{941051277363005047}{51371696293921946616} a^{11} + \frac{203936205400759234}{6421462036740243327} a^{10} - \frac{2237914753358845873}{205486785175687786464} a^{9} - \frac{508643162027249261}{8561949382320324436} a^{8} + \frac{6465309705553872697}{68495595058562595488} a^{7} - \frac{3250468247849328493}{51371696293921946616} a^{6} - \frac{105567248041605197509}{410973570351375572928} a^{5} - \frac{13275536634130743449}{205486785175687786464} a^{4} - \frac{18665163686413937375}{51371696293921946616} a^{3} + \frac{29224182607883499503}{77057544440882919924} a^{2} + \frac{6272250642746411132}{19264386110220729981} a - \frac{394418943813078748}{19264386110220729981}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 862910647.239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 174 conjugacy class representatives for t18n930 are not computed |
| Character table for t18n930 is not computed |
Intermediate fields
| 3.1.104.1, 6.2.692224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.10.6 | $x^{4} + 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.8.5 | $x^{4} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.8.29.58 | $x^{8} + 8 x^{7} + 28 x^{6} + 24 x^{4} + 16 x^{3} + 8 x^{2} + 14$ | $8$ | $1$ | $29$ | $C_2 \wr C_2\wr C_2$ | $[2, 3, 7/2, 4, 17/4, 19/4]^{2}$ | |
| $3$ | 3.9.9.8 | $x^{9} + 6 x^{7} + 18 x^{3} + 27$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |