Properties

Label 18.2.10512224862...7248.1
Degree $18$
Signature $[2, 8]$
Discriminant $2^{18}\cdot 3^{24}\cdot 17^{5}$
Root discriminant $19.01$
Ramified primes $2, 3, 17$
Class number $1$
Class group Trivial
Galois group 18T839

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 54, -81, 114, -102, -60, 230, -150, -123, 304, -249, 60, 84, -120, 93, -52, 21, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 21*x^16 - 52*x^15 + 93*x^14 - 120*x^13 + 84*x^12 + 60*x^11 - 249*x^10 + 304*x^9 - 123*x^8 - 150*x^7 + 230*x^6 - 60*x^5 - 102*x^4 + 114*x^3 - 81*x^2 + 54*x - 19)
 
gp: K = bnfinit(x^18 - 6*x^17 + 21*x^16 - 52*x^15 + 93*x^14 - 120*x^13 + 84*x^12 + 60*x^11 - 249*x^10 + 304*x^9 - 123*x^8 - 150*x^7 + 230*x^6 - 60*x^5 - 102*x^4 + 114*x^3 - 81*x^2 + 54*x - 19, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 21 x^{16} - 52 x^{15} + 93 x^{14} - 120 x^{13} + 84 x^{12} + 60 x^{11} - 249 x^{10} + 304 x^{9} - 123 x^{8} - 150 x^{7} + 230 x^{6} - 60 x^{5} - 102 x^{4} + 114 x^{3} - 81 x^{2} + 54 x - 19 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(105122248623208062517248=2^{18}\cdot 3^{24}\cdot 17^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{385122220275313} a^{17} + \frac{115222063682378}{385122220275313} a^{16} + \frac{141878239823170}{385122220275313} a^{15} + \frac{63619749426032}{385122220275313} a^{14} - \frac{99956856338679}{385122220275313} a^{13} + \frac{5457165637541}{385122220275313} a^{12} + \frac{134550242376076}{385122220275313} a^{11} + \frac{43620523221804}{385122220275313} a^{10} - \frac{11045618244973}{22654248251489} a^{9} - \frac{65317974361679}{385122220275313} a^{8} - \frac{150943018830987}{385122220275313} a^{7} - \frac{96959627949951}{385122220275313} a^{6} - \frac{79563252794956}{385122220275313} a^{5} + \frac{139893588300933}{385122220275313} a^{4} - \frac{128457155053824}{385122220275313} a^{3} - \frac{140347159571488}{385122220275313} a^{2} - \frac{125093740918698}{385122220275313} a + \frac{119375657462547}{385122220275313}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 16098.0049231 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T839:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 165888
The 192 conjugacy class representatives for t18n839 are not computed
Character table for t18n839 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 9.5.9829532736.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $18$ $18$ $18$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.1$x^{6} + x^{2} - 1$$2$$3$$6$$A_4$$[2, 2]^{3}$
2.12.12.11$x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$$2$$6$$12$$A_4 \times C_2$$[2, 2]^{6}$
3Data not computed
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
17.3.0.1$x^{3} - x + 3$$1$$3$$0$$C_3$$[\ ]^{3}$
17.3.2.1$x^{3} - 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
17.3.2.1$x^{3} - 17$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
17.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$