Normalized defining polynomial
\( x^{18} - 6 x^{17} + 10 x^{16} + 20 x^{15} - 113 x^{14} + 126 x^{13} + 337 x^{12} - 1246 x^{11} + 2115 x^{10} - 526 x^{9} - 3634 x^{8} + 10614 x^{7} - 15404 x^{6} + 17070 x^{5} - 13501 x^{4} + 8644 x^{3} - 3815 x^{2} + 1254 x - 169 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102698732184167438329315328=2^{24}\cdot 37^{7}\cdot 401^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{137} a^{16} - \frac{52}{137} a^{15} + \frac{38}{137} a^{14} - \frac{45}{137} a^{13} - \frac{58}{137} a^{12} - \frac{15}{137} a^{11} + \frac{43}{137} a^{10} + \frac{41}{137} a^{9} - \frac{43}{137} a^{8} + \frac{17}{137} a^{7} - \frac{34}{137} a^{6} - \frac{62}{137} a^{5} + \frac{9}{137} a^{4} + \frac{57}{137} a^{3} + \frac{2}{137} a^{2} - \frac{19}{137} a + \frac{3}{137}$, $\frac{1}{77132607700943279164369999} a^{17} + \frac{1503008944808012778873}{1264468978703988183022459} a^{16} - \frac{25560491564289433550829687}{77132607700943279164369999} a^{15} - \frac{36769870839287673445119741}{77132607700943279164369999} a^{14} - \frac{37944617826970592184596668}{77132607700943279164369999} a^{13} + \frac{13825008719417483717863064}{77132607700943279164369999} a^{12} - \frac{30497226594008229924553261}{77132607700943279164369999} a^{11} - \frac{143231598231351041881015}{563011735043381599739927} a^{10} + \frac{2943821990217966261223902}{77132607700943279164369999} a^{9} + \frac{28570378892912875070055176}{77132607700943279164369999} a^{8} + \frac{29828242976601127964316021}{77132607700943279164369999} a^{7} - \frac{16023235275673608880448499}{77132607700943279164369999} a^{6} - \frac{25235198699403219992012100}{77132607700943279164369999} a^{5} + \frac{10309614086233843345458825}{77132607700943279164369999} a^{4} - \frac{14362316687739006491861124}{77132607700943279164369999} a^{3} - \frac{24310711714868626225304783}{77132607700943279164369999} a^{2} + \frac{10956140909872948806759399}{77132607700943279164369999} a - \frac{4740594233212480783585397}{77132607700943279164369999}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 457823.447843 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n880 are not computed |
| Character table for t18n880 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.1299958592.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 401 | Data not computed | ||||||