Properties

Label 18.2.10102769943...2208.1
Degree $18$
Signature $[2, 8]$
Discriminant $2^{12}\cdot 3^{21}\cdot 11^{9}$
Root discriminant $18.97$
Ramified primes $2, 3, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_3^2$ (as 18T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, 0, 0, -60, 0, 0, -758, 0, 0, 283, 0, 0, 25, 0, 0, -7, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^15 + 25*x^12 + 283*x^9 - 758*x^6 - 60*x^3 - 8)
 
gp: K = bnfinit(x^18 - 7*x^15 + 25*x^12 + 283*x^9 - 758*x^6 - 60*x^3 - 8, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{15} + 25 x^{12} + 283 x^{9} - 758 x^{6} - 60 x^{3} - 8 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(101027699433710814302208=2^{12}\cdot 3^{21}\cdot 11^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{6} - \frac{1}{2} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{2} a^{4} + \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{3} a^{8} - \frac{1}{2} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{42} a^{12} - \frac{1}{21} a^{9} - \frac{5}{14} a^{6} + \frac{1}{21} a^{3} - \frac{3}{7}$, $\frac{1}{42} a^{13} - \frac{1}{21} a^{10} - \frac{5}{14} a^{7} + \frac{1}{21} a^{4} - \frac{3}{7} a$, $\frac{1}{84} a^{14} + \frac{5}{84} a^{11} + \frac{13}{84} a^{8} + \frac{23}{84} a^{5} + \frac{19}{42} a^{2}$, $\frac{1}{1064196} a^{15} + \frac{1}{252} a^{14} + \frac{1}{126} a^{13} + \frac{10175}{1064196} a^{12} - \frac{1}{28} a^{11} - \frac{1}{63} a^{10} + \frac{1315}{25956} a^{9} - \frac{43}{252} a^{8} + \frac{3}{14} a^{7} + \frac{733}{118244} a^{6} - \frac{103}{252} a^{5} + \frac{22}{63} a^{4} - \frac{124864}{266049} a^{3} + \frac{5}{126} a^{2} - \frac{10}{21} a - \frac{77566}{266049}$, $\frac{1}{2128392} a^{16} - \frac{2239}{709464} a^{13} + \frac{1}{126} a^{12} - \frac{1}{18} a^{11} + \frac{713}{17304} a^{10} - \frac{1}{14} a^{9} + \frac{4}{9} a^{8} - \frac{49943}{236488} a^{7} - \frac{43}{126} a^{6} - \frac{1}{6} a^{5} + \frac{110711}{266049} a^{4} + \frac{23}{126} a^{3} - \frac{4}{9} a^{2} - \frac{90235}{532098} a + \frac{5}{63}$, $\frac{1}{2128392} a^{17} - \frac{2239}{709464} a^{14} + \frac{1}{126} a^{13} - \frac{1}{126} a^{12} + \frac{713}{17304} a^{11} - \frac{1}{14} a^{10} + \frac{1}{63} a^{9} - \frac{49943}{236488} a^{8} - \frac{43}{126} a^{7} - \frac{3}{14} a^{6} + \frac{110711}{266049} a^{5} + \frac{23}{126} a^{4} - \frac{22}{63} a^{3} - \frac{90235}{532098} a^{2} + \frac{5}{63} a + \frac{10}{21}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 82728.7265615392 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3^2$ (as 18T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 9 conjugacy class representatives for $S_3^2$
Character table for $S_3^2$

Intermediate fields

\(\Q(\sqrt{33}) \), 3.1.44.1, 3.1.108.1, 6.2.574992.1, 6.2.11643588.1 x2, 6.2.46574352.1, 9.1.1676676672.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Degree 9 sibling: data not computed
Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
3Data not computed
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$