Normalized defining polynomial
\( x^{18} - 63 x^{16} + 1530 x^{14} - 19224 x^{12} + 138096 x^{10} - 582498 x^{8} + 1409982 x^{6} - 1801800 x^{4} + 984375 x^{2} - 109375 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(975932042620281617601618555760017408=2^{26}\cdot 3^{36}\cdot 7^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{8} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} + \frac{5}{12} a^{2} - \frac{1}{12}$, $\frac{1}{12} a^{11} + \frac{1}{12} a^{9} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{5}{12} a^{3} - \frac{1}{12} a$, $\frac{1}{48} a^{12} - \frac{1}{24} a^{10} - \frac{11}{48} a^{8} + \frac{1}{24} a^{6} - \frac{19}{48} a^{4} - \frac{1}{3} a^{2} + \frac{7}{16}$, $\frac{1}{240} a^{13} + \frac{1}{120} a^{11} + \frac{1}{48} a^{9} - \frac{1}{4} a^{8} - \frac{9}{40} a^{7} + \frac{61}{240} a^{5} - \frac{17}{60} a^{3} - \frac{1}{2} a^{2} + \frac{77}{240} a - \frac{1}{4}$, $\frac{1}{1200} a^{14} + \frac{1}{100} a^{12} + \frac{1}{240} a^{10} + \frac{23}{100} a^{8} - \frac{79}{1200} a^{6} + \frac{251}{600} a^{4} + \frac{257}{1200} a^{2} + \frac{5}{24}$, $\frac{1}{12000} a^{15} - \frac{1}{2400} a^{14} - \frac{13}{12000} a^{13} + \frac{13}{2400} a^{12} - \frac{49}{2400} a^{11} + \frac{3}{160} a^{10} - \frac{349}{12000} a^{9} + \frac{149}{2400} a^{8} - \frac{243}{4000} a^{7} - \frac{71}{2400} a^{6} - \frac{3823}{12000} a^{5} + \frac{341}{800} a^{4} + \frac{1319}{4000} a^{3} + \frac{1043}{2400} a^{2} - \frac{23}{480} a - \frac{17}{96}$, $\frac{1}{103855740000} a^{16} - \frac{17226919}{51927870000} a^{14} + \frac{16512373}{10385574000} a^{12} - \frac{696547181}{25963935000} a^{10} - \frac{2189233777}{51927870000} a^{8} - \frac{8470262449}{51927870000} a^{6} - \frac{12957256909}{51927870000} a^{4} - \frac{509023151}{1038557400} a^{2} - \frac{67137527}{166169184}$, $\frac{1}{519278700000} a^{17} + \frac{8819387}{519278700000} a^{15} - \frac{1}{2400} a^{14} - \frac{26495213}{34618580000} a^{13} + \frac{13}{2400} a^{12} - \frac{13388128849}{519278700000} a^{11} + \frac{3}{160} a^{10} + \frac{10815682307}{173092900000} a^{9} + \frac{149}{2400} a^{8} - \frac{100414575923}{519278700000} a^{7} - \frac{71}{2400} a^{6} - \frac{11854814331}{173092900000} a^{5} + \frac{341}{800} a^{4} - \frac{5572380551}{20771148000} a^{3} + \frac{1043}{2400} a^{2} + \frac{5922029}{83084592} a - \frac{17}{96}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14027256565500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n658 are not computed |
| Character table for t18n658 is not computed |
Intermediate fields
| 3.3.756.1, 9.9.2917096519063104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.8 | $x^{6} + 2 x^{5} + 2$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| 2.12.16.16 | $x^{12} - 54 x^{10} - 509 x^{8} - 964 x^{6} - 777 x^{4} - 934 x^{2} + 357$ | $6$ | $2$ | $16$ | 12T30 | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $3$ | 3.9.18.24 | $x^{9} + 3 x^{6} + 24 x^{3} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2 : C_6$ | $[3/2, 2, 5/2]_{2}$ |
| 3.9.18.24 | $x^{9} + 3 x^{6} + 24 x^{3} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3^2 : C_6$ | $[3/2, 2, 5/2]_{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.11.3 | $x^{12} + 224$ | $12$ | $1$ | $11$ | $D_4 \times C_3$ | $[\ ]_{12}^{2}$ |