Normalized defining polynomial
\( x^{18} - 59 x^{16} + 1366 x^{14} - 16299 x^{12} + 109802 x^{10} - 427411 x^{8} + 945383 x^{6} - 1135396 x^{4} + 663632 x^{2} - 139712 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(974261381704616015309286932480000=2^{24}\cdot 5^{4}\cdot 37^{9}\cdot 59^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{3}{8} a^{12} - \frac{1}{4} a^{10} - \frac{3}{8} a^{8} + \frac{1}{4} a^{6} - \frac{3}{8} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{14} - \frac{3}{32} a^{13} + \frac{3}{16} a^{12} - \frac{1}{16} a^{11} + \frac{1}{8} a^{10} - \frac{11}{32} a^{9} - \frac{5}{16} a^{8} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} + \frac{13}{32} a^{5} + \frac{3}{16} a^{4} - \frac{1}{32} a^{3} + \frac{1}{16} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{10602921680991104} a^{16} + \frac{445244874202281}{10602921680991104} a^{14} - \frac{1}{4} a^{13} - \frac{739545265190323}{5301460840495552} a^{12} - \frac{1}{4} a^{11} + \frac{4075184053130045}{10602921680991104} a^{10} - \frac{1}{2} a^{9} - \frac{1657735146637921}{5301460840495552} a^{8} - \frac{1}{4} a^{7} + \frac{4380733238568805}{10602921680991104} a^{6} - \frac{1}{2} a^{5} - \frac{1517351479258405}{10602921680991104} a^{4} - \frac{1}{4} a^{3} - \frac{493171811973003}{1325365210123888} a^{2} + \frac{1}{4} a + \frac{146924198673411}{662682605061944}$, $\frac{1}{21205843361982208} a^{17} - \frac{217437730859663}{21205843361982208} a^{15} - \frac{1}{16} a^{14} + \frac{254478642402593}{10602921680991104} a^{13} - \frac{5}{16} a^{12} + \frac{5400549263253933}{21205843361982208} a^{11} - \frac{3}{8} a^{10} - \frac{3314441659292781}{10602921680991104} a^{9} - \frac{5}{16} a^{8} + \frac{3055368028444917}{21205843361982208} a^{7} + \frac{3}{8} a^{6} + \frac{470696335927427}{21205843361982208} a^{5} + \frac{3}{16} a^{4} - \frac{102584121585065}{662682605061944} a^{3} - \frac{7}{16} a^{2} + \frac{643936152469869}{1325365210123888} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 74595029159.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.20.31 | $x^{12} + 4 x^{10} + x^{8} - x^{4} + 4 x^{2} + 3$ | $6$ | $2$ | $20$ | 12T135 | $[4/3, 4/3, 2, 2, 8/3, 8/3]_{3}^{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $59$ | 59.6.5.2 | $x^{6} + 177$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |