Normalized defining polynomial
\( x^{18} - 3 x^{17} - 63 x^{16} + 198 x^{15} + 1503 x^{14} - 4947 x^{13} - 16878 x^{12} + 57978 x^{11} + 91992 x^{10} - 321677 x^{9} - 256524 x^{8} + 779346 x^{7} + 512415 x^{6} - 768105 x^{5} - 588846 x^{4} + 180750 x^{3} + 224865 x^{2} + 48300 x + 2095 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93275843046071704318619044189453125=3^{20}\cdot 5^{13}\cdot 23^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{11} + \frac{1}{12} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{12}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} + \frac{1}{24} a^{10} - \frac{1}{24} a^{9} + \frac{3}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{7}{24} a^{4} - \frac{1}{12} a^{2} - \frac{7}{24} a + \frac{7}{24}$, $\frac{1}{240} a^{14} + \frac{1}{240} a^{13} - \frac{1}{48} a^{12} - \frac{1}{60} a^{11} - \frac{1}{6} a^{10} + \frac{3}{20} a^{9} - \frac{3}{16} a^{8} + \frac{11}{40} a^{7} + \frac{3}{8} a^{6} - \frac{49}{240} a^{5} + \frac{29}{240} a^{4} + \frac{11}{24} a^{3} - \frac{13}{48} a^{2} + \frac{1}{6} a + \frac{5}{16}$, $\frac{1}{480} a^{15} - \frac{1}{80} a^{13} + \frac{1}{480} a^{12} - \frac{3}{40} a^{11} - \frac{1}{120} a^{10} - \frac{1}{480} a^{9} - \frac{43}{160} a^{8} - \frac{9}{20} a^{7} + \frac{101}{480} a^{6} + \frac{13}{80} a^{5} - \frac{53}{160} a^{4} + \frac{13}{96} a^{3} - \frac{9}{32} a^{2} + \frac{23}{96} a - \frac{31}{96}$, $\frac{1}{960} a^{16} - \frac{1}{960} a^{15} - \frac{1}{480} a^{14} + \frac{11}{960} a^{13} + \frac{23}{960} a^{12} - \frac{1}{15} a^{11} - \frac{157}{960} a^{10} + \frac{1}{10} a^{9} + \frac{71}{320} a^{8} - \frac{139}{960} a^{7} + \frac{97}{960} a^{6} + \frac{287}{960} a^{5} + \frac{5}{48} a^{4} + \frac{5}{12} a^{3} + \frac{31}{96} a^{2} + \frac{37}{96} a + \frac{25}{64}$, $\frac{1}{180190167226332848188800} a^{17} - \frac{37140830923086289321}{90095083613166424094400} a^{16} - \frac{10592565220877959743}{12012677815088856545920} a^{15} + \frac{64688503338493696973}{180190167226332848188800} a^{14} - \frac{302063990988532392601}{45047541806583212047200} a^{13} + \frac{6600419746508502641689}{180190167226332848188800} a^{12} - \frac{1261584017124347192509}{180190167226332848188800} a^{11} + \frac{22932261134187294524909}{180190167226332848188800} a^{10} - \frac{4490532767145002548473}{60063389075444282729600} a^{9} + \frac{3706990865538830007209}{11261885451645803011800} a^{8} + \frac{241755301561277659439}{1801901672263328481888} a^{7} - \frac{11769098284116867403779}{30031694537722141364800} a^{6} + \frac{35052348783180611854261}{180190167226332848188800} a^{5} - \frac{7188866137754603807381}{45047541806583212047200} a^{4} - \frac{3540581336523552503881}{18019016722633284818880} a^{3} + \frac{3863108911753206526547}{9009508361316642409440} a^{2} + \frac{4534127941555729196801}{36038033445266569637760} a + \frac{4325315272831498068887}{12012677815088856545920}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2264806866520 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$PSU(3,2)$ (as 18T35):
| A solvable group of order 72 |
| The 6 conjugacy class representatives for $PSU(3,2)$ |
| Character table for $PSU(3,2)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 9.9.136583925149390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |