Normalized defining polynomial
\( x^{18} - 2 x^{17} - 63 x^{16} + 99 x^{15} + 1595 x^{14} - 1797 x^{13} - 20806 x^{12} + 14111 x^{11} + 148967 x^{10} - 34860 x^{9} - 572263 x^{8} - 108479 x^{7} + 1034639 x^{6} + 563303 x^{5} - 562290 x^{4} - 383111 x^{3} + 79922 x^{2} + 66448 x + 5186 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(925103102315013629321000000000000=2^{12}\cdot 5^{12}\cdot 41^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{7} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{20} a^{10} + \frac{1}{20} a^{9} - \frac{1}{5} a^{8} + \frac{7}{20} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{7}{20} a^{4} + \frac{7}{20} a^{3} + \frac{1}{5} a^{2} - \frac{1}{10} a + \frac{3}{10}$, $\frac{1}{2460} a^{14} + \frac{23}{2460} a^{13} + \frac{22}{615} a^{12} + \frac{27}{820} a^{11} + \frac{221}{2460} a^{10} - \frac{37}{1230} a^{9} - \frac{39}{164} a^{8} - \frac{49}{164} a^{7} + \frac{298}{615} a^{6} + \frac{9}{164} a^{5} - \frac{241}{492} a^{4} - \frac{83}{410} a^{3} - \frac{27}{82} a^{2} + \frac{63}{410} a + \frac{62}{615}$, $\frac{1}{4920} a^{15} - \frac{1}{4920} a^{14} - \frac{19}{984} a^{13} + \frac{1}{82} a^{12} - \frac{1}{4920} a^{11} - \frac{89}{4920} a^{10} + \frac{7}{410} a^{9} - \frac{97}{328} a^{8} + \frac{2227}{4920} a^{7} - \frac{169}{410} a^{6} - \frac{263}{4920} a^{5} + \frac{331}{1640} a^{4} - \frac{69}{328} a^{3} - \frac{223}{820} a^{2} - \frac{599}{2460} a + \frac{33}{820}$, $\frac{1}{4920} a^{16} - \frac{1}{120} a^{13} - \frac{103}{4920} a^{12} + \frac{51}{820} a^{11} + \frac{301}{4920} a^{10} + \frac{9}{328} a^{9} + \frac{421}{1230} a^{8} - \frac{251}{4920} a^{7} - \frac{281}{4920} a^{6} - \frac{289}{2460} a^{5} + \frac{27}{82} a^{4} - \frac{573}{1640} a^{3} + \frac{49}{615} a^{2} + \frac{89}{1230} a - \frac{17}{820}$, $\frac{1}{289548387845959100796468240} a^{17} + \frac{659087230233451085575}{19303225856397273386431216} a^{16} + \frac{831056776227677509231}{24129032320496591733039020} a^{15} + \frac{3618007395843396497023}{96516129281986366932156080} a^{14} + \frac{354180960871594941503073}{24129032320496591733039020} a^{13} - \frac{6978159192177653682034819}{289548387845959100796468240} a^{12} + \frac{1071366000994737110292553}{289548387845959100796468240} a^{11} - \frac{3445733697972563640327443}{72387096961489775199117060} a^{10} + \frac{6597957118505994466627559}{96516129281986366932156080} a^{9} + \frac{107089130449727432903528923}{289548387845959100796468240} a^{8} - \frac{2603444795322212626338452}{18096774240372443799779265} a^{7} + \frac{487828377381310063873765}{19303225856397273386431216} a^{6} - \frac{5512478409011680055196383}{12064516160248295866519510} a^{5} - \frac{189422875912961548650655}{1412431160224190735592528} a^{4} - \frac{23253993173366716530193697}{57909677569191820159293648} a^{3} - \frac{1219508905107324733442458}{18096774240372443799779265} a^{2} + \frac{21688178997513566954043137}{48258064640993183466078040} a + \frac{2141468357499486372100795}{28954838784595910079646824}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 156794220435 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3.C_2$ (as 18T10):
| A solvable group of order 36 |
| The 6 conjugacy class representatives for $C_3^2 : C_4$ |
| Character table for $C_3^2 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 6.6.7064402500.1 x2, 6.6.1130304400.1 x2, 9.9.4750104241000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 siblings: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $41$ | 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |