Normalized defining polynomial
\( x^{18} - 9 x^{17} - 42 x^{16} + 510 x^{15} + 531 x^{14} - 11670 x^{13} + 1030 x^{12} + 138711 x^{11} - 85281 x^{10} - 913141 x^{9} + 833481 x^{8} + 3250152 x^{7} - 3597869 x^{6} - 5476125 x^{5} + 6904779 x^{4} + 2738371 x^{3} - 4102746 x^{2} + 274272 x + 45928 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(919978912157596000406985531780621=3^{27}\cdot 7^{15}\cdot 71^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{97504537066459017963021844812359912231261212} a^{17} - \frac{2064691828041859626813783355754945242839387}{48752268533229508981510922406179956115630606} a^{16} - \frac{832278092600460119199983075293610169807123}{97504537066459017963021844812359912231261212} a^{15} + \frac{5653485079357376332927145654252412480197823}{97504537066459017963021844812359912231261212} a^{14} + \frac{2118725804131135890160106064730660913491043}{24376134266614754490755461203089978057815303} a^{13} - \frac{35119437077133256884770763273536951055132969}{97504537066459017963021844812359912231261212} a^{12} + \frac{43785801882557637792688613363601954229344469}{97504537066459017963021844812359912231261212} a^{11} + \frac{9270349200003566099882960780691186196155984}{24376134266614754490755461203089978057815303} a^{10} + \frac{13622234069416114521333585054726203611010477}{48752268533229508981510922406179956115630606} a^{9} - \frac{29947757045838251360526824761946071059541787}{97504537066459017963021844812359912231261212} a^{8} + \frac{727913984622491455205083157028877639024939}{97504537066459017963021844812359912231261212} a^{7} + \frac{14962052599403729376609297776469598684573443}{48752268533229508981510922406179956115630606} a^{6} + \frac{4951560172771748585367551911774950036121111}{97504537066459017963021844812359912231261212} a^{5} + \frac{32056735396757871544121784825854942081778181}{97504537066459017963021844812359912231261212} a^{4} + \frac{26141511241209528681266911955787069484120845}{97504537066459017963021844812359912231261212} a^{3} + \frac{12167332699366931268155360763466279866835432}{24376134266614754490755461203089978057815303} a^{2} - \frac{1816696648233329810778301665737539622896314}{24376134266614754490755461203089978057815303} a - \frac{3321076190534505610240273936382265543699107}{24376134266614754490755461203089978057815303}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30703043328.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4^2$ (as 18T109):
| A solvable group of order 288 |
| The 32 conjugacy class representatives for $C_2\times A_4^2$ |
| Character table for $C_2\times A_4^2$ is not computed |
Intermediate fields
| 3.3.3969.2, 3.3.3969.1, \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{9})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 71 | Data not computed | ||||||