Normalized defining polynomial
\( x^{18} - 2 x^{17} - 67 x^{16} + 115 x^{15} + 1769 x^{14} - 2449 x^{13} - 23841 x^{12} + 24381 x^{11} + 178681 x^{10} - 120414 x^{9} - 760652 x^{8} + 280327 x^{7} + 1794673 x^{6} - 231163 x^{5} - 2145279 x^{4} - 47748 x^{3} + 1037777 x^{2} + 45603 x - 111031 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(89893826072563345946632000000000=2^{12}\cdot 5^{9}\cdot 37^{6}\cdot 16361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{67} a^{16} + \frac{9}{67} a^{15} + \frac{20}{67} a^{14} + \frac{26}{67} a^{13} + \frac{6}{67} a^{12} - \frac{15}{67} a^{11} - \frac{25}{67} a^{10} + \frac{32}{67} a^{9} - \frac{26}{67} a^{8} - \frac{15}{67} a^{7} + \frac{12}{67} a^{6} - \frac{24}{67} a^{5} + \frac{5}{67} a^{4} - \frac{5}{67} a^{3} + \frac{13}{67} a^{2} + \frac{25}{67} a - \frac{1}{67}$, $\frac{1}{151342629245335803330513693079671241726219} a^{17} + \frac{1086397182008728665616230241156704146979}{151342629245335803330513693079671241726219} a^{16} + \frac{24895603165102868474024946479101150812260}{151342629245335803330513693079671241726219} a^{15} - \frac{56609741275090080448752840734235076496321}{151342629245335803330513693079671241726219} a^{14} + \frac{43513221983084818921224821730367953149169}{151342629245335803330513693079671241726219} a^{13} - \frac{65933041004265922503134522345134804438954}{151342629245335803330513693079671241726219} a^{12} - \frac{39567742413235134548446052435517803914092}{151342629245335803330513693079671241726219} a^{11} + \frac{6306324266138214114017543664968951018813}{151342629245335803330513693079671241726219} a^{10} - \frac{36370841982214842118264536081712349754308}{151342629245335803330513693079671241726219} a^{9} - \frac{74594336930801432466369231044529674952957}{151342629245335803330513693079671241726219} a^{8} + \frac{8267536419311516625953028974422898686215}{151342629245335803330513693079671241726219} a^{7} + \frac{2931330051260214549506814196368327985278}{151342629245335803330513693079671241726219} a^{6} + \frac{40463806302262622810118512154535899434002}{151342629245335803330513693079671241726219} a^{5} - \frac{58154026875808063521878456117618893237524}{151342629245335803330513693079671241726219} a^{4} + \frac{34066727127450036823453370569245065366076}{151342629245335803330513693079671241726219} a^{3} - \frac{9789442628062535531980533587549112656114}{151342629245335803330513693079671241726219} a^{2} + \frac{33700338324823808445116758000403738528349}{151342629245335803330513693079671241726219} a + \frac{53027006513274269207876135978439429375790}{151342629245335803330513693079671241726219}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7328990600.26 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n394 |
| Character table for t18n394 is not computed |
Intermediate fields
| 3.3.148.1, 6.6.44796418000.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 37 | Data not computed | ||||||
| 16361 | Data not computed | ||||||