Normalized defining polynomial
\( x^{18} - 65 x^{16} - 43 x^{15} + 1612 x^{14} + 1847 x^{13} - 19451 x^{12} - 29194 x^{11} + 121396 x^{10} + 218343 x^{9} - 376478 x^{8} - 806649 x^{7} + 469788 x^{6} + 1370574 x^{5} - 17907 x^{4} - 858897 x^{3} - 203157 x^{2} + 93150 x + 19953 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(871010800275543024876459215615037=3^{12}\cdot 107^{8}\cdot 157^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 107, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} - \frac{1}{27} a^{11} - \frac{4}{27} a^{10} - \frac{4}{27} a^{9} - \frac{1}{27} a^{8} - \frac{2}{27} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{12} + \frac{1}{27} a^{11} - \frac{2}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{9} a^{8} + \frac{7}{27} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{5} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{15} + \frac{1}{81} a^{13} + \frac{4}{81} a^{12} + \frac{4}{81} a^{11} - \frac{11}{81} a^{10} + \frac{1}{9} a^{9} + \frac{13}{81} a^{8} + \frac{2}{9} a^{7} - \frac{10}{27} a^{6} - \frac{1}{9} a^{5} - \frac{8}{27} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3}$, $\frac{1}{243} a^{16} + \frac{1}{243} a^{15} + \frac{1}{243} a^{14} - \frac{4}{243} a^{13} - \frac{1}{243} a^{12} - \frac{7}{243} a^{11} - \frac{2}{243} a^{10} - \frac{32}{243} a^{9} + \frac{31}{243} a^{8} + \frac{35}{81} a^{7} + \frac{17}{81} a^{6} - \frac{38}{81} a^{5} - \frac{26}{81} a^{4} + \frac{2}{27} a^{3} - \frac{13}{27} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{3446381486418542134368415591617} a^{17} + \frac{1108363899529658435289748835}{3446381486418542134368415591617} a^{16} + \frac{12456325309177560864952679621}{3446381486418542134368415591617} a^{15} + \frac{1254518952146998203626245856}{127643758756242301272904281171} a^{14} - \frac{30140848738344243599164076714}{3446381486418542134368415591617} a^{13} - \frac{4378180044361771337307219182}{3446381486418542134368415591617} a^{12} + \frac{7062406074349649003659684358}{1148793828806180711456138530539} a^{11} + \frac{69728843725300637545404388487}{3446381486418542134368415591617} a^{10} + \frac{413357029640116624583190034103}{3446381486418542134368415591617} a^{9} - \frac{21347495374465181637189337766}{3446381486418542134368415591617} a^{8} - \frac{197041165254364994215939908860}{1148793828806180711456138530539} a^{7} - \frac{2236947031086833553279819686}{382931276268726903818712843513} a^{6} + \frac{156720012245990765359966097102}{1148793828806180711456138530539} a^{5} + \frac{24207097074244414642259253677}{49947557774181770063310370893} a^{4} - \frac{392565142481456525618346386}{382931276268726903818712843513} a^{3} + \frac{144838449868798684246338503672}{382931276268726903818712843513} a^{2} + \frac{29747765020038161060439294596}{127643758756242301272904281171} a + \frac{61047379798412541842768460604}{127643758756242301272904281171}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 243556388943 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 58 conjugacy class representatives for t18n485 are not computed |
| Character table for t18n485 is not computed |
Intermediate fields
| 3.3.321.1, 6.6.145596933.1, 9.9.261709467888969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.1.1 | $x^{2} - 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.4.3.2 | $x^{4} - 107$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 107.4.3.2 | $x^{4} - 107$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $157$ | 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 157.6.5.3 | $x^{6} - 98125$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |