Normalized defining polynomial
\( x^{18} - 6 x^{17} - 42 x^{16} + 238 x^{15} + 738 x^{14} - 3708 x^{13} - 6681 x^{12} + 29718 x^{11} + 33048 x^{10} - 132374 x^{9} - 91158 x^{8} + 327990 x^{7} + 143671 x^{6} - 430524 x^{5} - 128340 x^{4} + 256128 x^{3} + 54270 x^{2} - 38430 x - 597 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8674894461032534679022957756612608=2^{16}\cdot 3^{33}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{11} - \frac{1}{2} a^{10} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{18} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{5}{18} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{36} a^{16} - \frac{1}{36} a^{15} - \frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{2} a^{11} + \frac{1}{3} a^{10} - \frac{1}{6} a^{9} - \frac{2}{9} a^{7} - \frac{4}{9} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{12} a + \frac{1}{12}$, $\frac{1}{633652221844107846601932204} a^{17} - \frac{3826614722925089641299011}{633652221844107846601932204} a^{16} + \frac{337012995877656950444279}{12185619650848227819267927} a^{15} + \frac{10229921272941928860465979}{211217407281369282200644068} a^{14} - \frac{12020199009034762406803253}{211217407281369282200644068} a^{13} + \frac{836253329260327038879343}{52804351820342320550161017} a^{12} + \frac{723711134528149678825061}{4061873216949409273089309} a^{11} - \frac{1149398032571108597801819}{8123746433898818546178618} a^{10} + \frac{8083330304780052860362472}{52804351820342320550161017} a^{9} + \frac{67934837323092022272330304}{158413055461026961650483051} a^{8} + \frac{71024112808423893939498817}{158413055461026961650483051} a^{7} + \frac{45086485372981890650904449}{158413055461026961650483051} a^{6} - \frac{19960261854311846960559881}{70405802427123094066881356} a^{5} - \frac{4983788829555511661249985}{70405802427123094066881356} a^{4} - \frac{553270082200618904024957}{1353957738983136424363103} a^{3} - \frac{58004953698132598073361193}{211217407281369282200644068} a^{2} + \frac{71444488178356002876357797}{211217407281369282200644068} a - \frac{11851333698320149758339319}{105608703640684641100322034}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138586384159 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_4$ (as 18T66):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_3:S_4$ |
| Character table for $C_2\times C_3:S_4$ |
Intermediate fields
| 3.3.45684.1, 3.3.45684.2, 3.3.564.1, 3.3.11421.1, 6.6.1565270892.1, 9.9.13443473060864064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $3$ | 3.6.11.1 | $x^{6} + 24$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
| 3.12.22.67 | $x^{12} + 99 x^{11} + 117 x^{10} - 114 x^{9} - 81 x^{8} + 9 x^{7} - 15 x^{6} + 54 x^{5} - 108 x^{4} + 45 x^{3} - 81 x^{2} - 108 x - 72$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||