Normalized defining polynomial
\( x^{18} - 3 x^{17} - 99 x^{16} + 210 x^{15} + 3375 x^{14} - 5607 x^{13} - 48021 x^{12} + 69291 x^{11} + 271242 x^{10} - 387311 x^{9} - 634638 x^{8} + 969615 x^{7} + 597186 x^{6} - 1122255 x^{5} - 128142 x^{4} + 568215 x^{3} - 79641 x^{2} - 102483 x + 29217 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(860913244245532536433941348923332929=3^{32}\cdot 11^{12}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} + \frac{6}{19} a^{12} + \frac{1}{19} a^{11} + \frac{9}{19} a^{10} - \frac{6}{19} a^{9} + \frac{7}{19} a^{8} + \frac{6}{19} a^{7} - \frac{4}{19} a^{6} - \frac{2}{19} a^{5} - \frac{6}{19} a^{4} + \frac{1}{19} a^{3} + \frac{8}{19} a^{2} - \frac{7}{19} a + \frac{5}{19}$, $\frac{1}{57} a^{14} - \frac{1}{57} a^{13} + \frac{16}{57} a^{12} - \frac{17}{57} a^{11} + \frac{26}{57} a^{10} - \frac{8}{57} a^{9} - \frac{8}{19} a^{8} - \frac{9}{19} a^{7} - \frac{4}{19} a^{6} + \frac{9}{19} a^{5} + \frac{8}{19} a^{4} - \frac{6}{19} a^{3} - \frac{2}{19} a^{2} - \frac{1}{19} a + \frac{1}{19}$, $\frac{1}{57} a^{15} + \frac{23}{57} a^{12} - \frac{2}{19} a^{11} - \frac{1}{19} a^{10} + \frac{1}{57} a^{9} + \frac{5}{19} a^{8} - \frac{5}{19} a^{7} + \frac{6}{19} a^{6} + \frac{8}{19} a^{5} - \frac{6}{19} a^{4} + \frac{6}{19} a^{3} - \frac{5}{19} a^{2} - \frac{3}{19} a - \frac{5}{19}$, $\frac{1}{2166} a^{16} + \frac{7}{2166} a^{15} - \frac{8}{1083} a^{14} + \frac{9}{722} a^{13} - \frac{629}{2166} a^{12} - \frac{320}{1083} a^{11} - \frac{215}{1083} a^{10} - \frac{325}{722} a^{9} - \frac{30}{361} a^{8} - \frac{173}{361} a^{7} + \frac{179}{361} a^{6} - \frac{143}{722} a^{5} + \frac{44}{361} a^{4} + \frac{93}{361} a^{3} - \frac{1}{19} a^{2} + \frac{113}{722} a + \frac{309}{722}$, $\frac{1}{740383976687164764348672229653966588} a^{17} - \frac{36445052502052059797520110557297}{370191988343582382174336114826983294} a^{16} + \frac{465580874702350320601585610037719}{740383976687164764348672229653966588} a^{15} + \frac{1624106806052922392677614243452155}{246794658895721588116224076551322196} a^{14} - \frac{4484971306226459231020180821046733}{185095994171791191087168057413491647} a^{13} - \frac{277218616776217802505050381331528475}{740383976687164764348672229653966588} a^{12} + \frac{66155860847159585701607146620852296}{185095994171791191087168057413491647} a^{11} + \frac{50381859711471042836909137236006025}{246794658895721588116224076551322196} a^{10} - \frac{41588436278206680041180892327792849}{246794658895721588116224076551322196} a^{9} + \frac{51110501668198244425062245648305681}{123397329447860794058112038275661098} a^{8} + \frac{30528020294952389060429143616852511}{61698664723930397029056019137830549} a^{7} + \frac{101721256550888925765746347395574033}{246794658895721588116224076551322196} a^{6} + \frac{37928514268125862697509369062426567}{246794658895721588116224076551322196} a^{5} - \frac{15196250407186828530045638644991831}{123397329447860794058112038275661098} a^{4} - \frac{18108051883721430840610424114877814}{61698664723930397029056019137830549} a^{3} + \frac{122924880021305160403386741861021449}{246794658895721588116224076551322196} a^{2} + \frac{20974359567650924079021372363063781}{123397329447860794058112038275661098} a - \frac{94994058769103966390238193868670039}{246794658895721588116224076551322196}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5246499911450 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times A_5$ (as 18T90):
| A non-solvable group of order 180 |
| The 15 conjugacy class representatives for $C_3\times A_5$ |
| Character table for $C_3\times A_5$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.6.50815528929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | $15{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | R | $15{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ |
| 3.9.16.12 | $x^{9} + 6 x^{8} + 3$ | $9$ | $1$ | $16$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| $11$ | 11.9.6.1 | $x^{9} - 121 x^{3} + 3993$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 11.9.6.1 | $x^{9} - 121 x^{3} + 3993$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $23$ | 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |