Normalized defining polynomial
\( x^{18} - 60 x^{16} - 14 x^{15} + 1404 x^{14} + 594 x^{13} - 16313 x^{12} - 8910 x^{11} + 100266 x^{10} + 57000 x^{9} - 332226 x^{8} - 153702 x^{7} + 603459 x^{6} + 148230 x^{5} - 574938 x^{4} + 23814 x^{3} + 223074 x^{2} - 78732 x + 6561 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8579614079673266727444373410729984=2^{12}\cdot 3^{25}\cdot 47^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{6} + \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{18} a^{10} + \frac{7}{18} a^{7} + \frac{1}{3} a^{5} + \frac{7}{18} a^{4} - \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{18} a^{11} + \frac{7}{18} a^{8} + \frac{1}{3} a^{6} + \frac{7}{18} a^{5} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{9} + \frac{1}{3} a^{7} + \frac{1}{18} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{10} - \frac{2}{9} a^{8} + \frac{19}{54} a^{7} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{324} a^{14} - \frac{1}{108} a^{13} + \frac{1}{108} a^{12} + \frac{1}{81} a^{11} + \frac{1}{54} a^{10} - \frac{1}{18} a^{9} + \frac{65}{162} a^{8} - \frac{4}{27} a^{7} + \frac{2}{27} a^{6} - \frac{7}{54} a^{5} - \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{5}{36} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{10692} a^{15} - \frac{1}{891} a^{14} - \frac{5}{891} a^{13} + \frac{247}{10692} a^{12} + \frac{5}{891} a^{11} - \frac{1}{99} a^{10} - \frac{367}{5346} a^{9} - \frac{94}{891} a^{8} + \frac{8}{891} a^{7} + \frac{46}{891} a^{6} - \frac{20}{99} a^{5} + \frac{109}{297} a^{4} + \frac{61}{1188} a^{3} - \frac{28}{99} a^{2} + \frac{14}{33} a + \frac{3}{44}$, $\frac{1}{32076} a^{16} - \frac{1}{5346} a^{14} + \frac{11}{2916} a^{13} - \frac{5}{297} a^{12} + \frac{5}{198} a^{11} + \frac{173}{16038} a^{10} + \frac{1}{198} a^{9} + \frac{763}{5346} a^{8} - \frac{848}{2673} a^{7} - \frac{709}{1782} a^{6} - \frac{529}{1782} a^{5} + \frac{1333}{3564} a^{4} - \frac{1}{6} a^{3} - \frac{7}{33} a^{2} - \frac{5}{44} a - \frac{5}{22}$, $\frac{1}{233844319832082192684} a^{17} + \frac{56142442563107}{4330450367260781346} a^{16} + \frac{844711136549959}{77948106610694064228} a^{15} - \frac{87102131637034160}{58461079958020548171} a^{14} + \frac{74322228738843409}{8660900734521562692} a^{13} + \frac{62909138647517959}{12991351101782344038} a^{12} + \frac{326533284683480945}{116922159916041096342} a^{11} - \frac{41418927467696401}{4330450367260781346} a^{10} - \frac{2746552539276380789}{38974053305347032114} a^{9} - \frac{3048049056233155981}{38974053305347032114} a^{8} + \frac{365758782099626731}{6495675550891172019} a^{7} + \frac{24914228021602003}{316862221994691318} a^{6} - \frac{2939060293254360809}{25982702203564688076} a^{5} - \frac{40897731007391531}{1443483455753593782} a^{4} + \frac{249389383427993987}{2886966911507187564} a^{3} - \frac{34209198159723017}{80193525319644099} a^{2} + \frac{42760152078247387}{320774101278576396} a + \frac{21683325530614403}{53462350213096066}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 942106579739 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 14 conjugacy class representatives for t18n217 |
| Character table for t18n217 |
Intermediate fields
| \(\Q(\sqrt{141}) \), 3.3.564.1 x3, 6.6.44851536.2, 9.9.165968803220544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ |
| 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 47 | Data not computed | ||||||