Normalized defining polynomial
\( x^{18} - 3 x^{17} - 36 x^{16} + 124 x^{15} + 396 x^{14} - 1650 x^{13} - 1575 x^{12} + 9750 x^{11} + 762 x^{10} - 28242 x^{9} + 8121 x^{8} + 42888 x^{7} - 18260 x^{6} - 34770 x^{5} + 15195 x^{4} + 14118 x^{3} - 5235 x^{2} - 2151 x + 631 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80716670418377815414668988416=2^{12}\cdot 3^{24}\cdot 7^{12}\cdot 71^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{9} + \frac{1}{8} a^{8} - \frac{5}{16} a^{7} - \frac{5}{16} a^{6} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} + \frac{5}{16} a^{3} - \frac{3}{16} a^{2} - \frac{3}{8} a + \frac{1}{16}$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{10} + \frac{1}{8} a^{9} + \frac{3}{16} a^{8} + \frac{3}{16} a^{7} + \frac{1}{4} a^{6} + \frac{5}{16} a^{5} - \frac{3}{16} a^{4} + \frac{5}{16} a^{3} - \frac{3}{8} a^{2} - \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} + \frac{1}{32} a^{11} + \frac{1}{16} a^{10} - \frac{3}{16} a^{9} - \frac{7}{32} a^{8} - \frac{15}{32} a^{7} - \frac{7}{16} a^{6} - \frac{7}{32} a^{5} - \frac{1}{2} a^{4} - \frac{11}{32} a^{3} + \frac{1}{8} a^{2} + \frac{3}{16} a - \frac{1}{32}$, $\frac{1}{1760} a^{16} + \frac{1}{110} a^{15} - \frac{1}{1760} a^{14} + \frac{9}{440} a^{13} + \frac{29}{1760} a^{12} - \frac{29}{880} a^{11} - \frac{69}{880} a^{10} - \frac{19}{352} a^{9} - \frac{111}{1760} a^{8} + \frac{37}{80} a^{7} - \frac{839}{1760} a^{6} - \frac{49}{110} a^{5} + \frac{117}{352} a^{4} - \frac{91}{440} a^{3} - \frac{403}{880} a^{2} - \frac{137}{352} a - \frac{3}{55}$, $\frac{1}{5302828715377600} a^{17} - \frac{255167045779}{1325707178844400} a^{16} - \frac{16381338423007}{1325707178844400} a^{15} - \frac{17009468135353}{1325707178844400} a^{14} + \frac{4860564589613}{1325707178844400} a^{13} - \frac{42178743322913}{2651414357688800} a^{12} + \frac{390100712608063}{5302828715377600} a^{11} + \frac{482726768937331}{5302828715377600} a^{10} + \frac{6417969285729}{74687728385600} a^{9} - \frac{1236591088876909}{5302828715377600} a^{8} + \frac{1028578304787719}{2651414357688800} a^{7} + \frac{311730454608847}{2651414357688800} a^{6} + \frac{363037061411009}{2651414357688800} a^{5} + \frac{124504959741631}{331426794711100} a^{4} - \frac{1963688715034353}{5302828715377600} a^{3} - \frac{2216199357834893}{5302828715377600} a^{2} - \frac{43057208380063}{2651414357688800} a + \frac{2164252034145387}{5302828715377600}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 423732852.769 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 24 conjugacy class representatives for t18n178 |
| Character table for t18n178 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 71 | Data not computed | ||||||