Normalized defining polynomial
\( x^{18} - 234 x^{16} - 81 x^{15} + 22437 x^{14} + 15795 x^{13} - 1144536 x^{12} - 1211598 x^{11} + 33557994 x^{10} + 46678194 x^{9} - 565874667 x^{8} - 947632203 x^{7} + 5143953720 x^{6} + 9562968054 x^{5} - 21792576465 x^{4} - 39404619099 x^{3} + 38964745521 x^{2} + 50872628097 x - 25675621091 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(79634372972300794853892771897752194830441843575053=7^{12}\cdot 13\cdot 29\cdot 223^{3}\cdot 1051^{3}\cdot 10583273^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $591.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 29, 223, 1051, 10583273$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{4} - \frac{1}{9} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{5} - \frac{1}{9} a^{3} - \frac{2}{9} a$, $\frac{1}{27} a^{6} - \frac{1}{9} a^{2} - \frac{2}{27}$, $\frac{1}{27} a^{7} - \frac{1}{9} a^{3} - \frac{2}{27} a$, $\frac{1}{81} a^{8} + \frac{1}{81} a^{6} - \frac{1}{27} a^{4} - \frac{5}{81} a^{2} - \frac{2}{81}$, $\frac{1}{81} a^{9} + \frac{1}{81} a^{7} - \frac{1}{27} a^{5} - \frac{5}{81} a^{3} - \frac{2}{81} a$, $\frac{1}{243} a^{10} - \frac{1}{243} a^{8} + \frac{4}{243} a^{6} + \frac{1}{243} a^{4} - \frac{19}{243} a^{2} - \frac{14}{243}$, $\frac{1}{243} a^{11} - \frac{1}{243} a^{9} + \frac{4}{243} a^{7} + \frac{1}{243} a^{5} - \frac{19}{243} a^{3} - \frac{14}{243} a$, $\frac{1}{729} a^{12} + \frac{1}{243} a^{8} + \frac{5}{729} a^{6} - \frac{2}{81} a^{4} - \frac{11}{243} a^{2} - \frac{14}{729}$, $\frac{1}{729} a^{13} + \frac{1}{243} a^{9} + \frac{5}{729} a^{7} - \frac{2}{81} a^{5} - \frac{11}{243} a^{3} - \frac{14}{729} a$, $\frac{1}{2187} a^{14} + \frac{1}{2187} a^{12} + \frac{1}{729} a^{10} + \frac{8}{2187} a^{8} - \frac{13}{2187} a^{6} - \frac{17}{729} a^{4} - \frac{47}{2187} a^{2} - \frac{14}{2187}$, $\frac{1}{2187} a^{15} + \frac{1}{2187} a^{13} + \frac{1}{729} a^{11} + \frac{8}{2187} a^{9} - \frac{13}{2187} a^{7} - \frac{17}{729} a^{5} - \frac{47}{2187} a^{3} - \frac{14}{2187} a$, $\frac{1}{6561} a^{16} - \frac{1}{6561} a^{14} + \frac{1}{6561} a^{12} + \frac{2}{6561} a^{10} - \frac{29}{6561} a^{8} - \frac{25}{6561} a^{6} + \frac{55}{6561} a^{4} + \frac{80}{6561} a^{2} + \frac{28}{6561}$, $\frac{1}{203805696686657466691568481369492008777607} a^{17} - \frac{4905621830772183330855936860270294911}{67935232228885822230522827123164002925869} a^{16} - \frac{27047857653083850996712861936318086697}{203805696686657466691568481369492008777607} a^{15} - \frac{13525953026978026917001508233843213213}{67935232228885822230522827123164002925869} a^{14} - \frac{4979663482567620592572780764369819513}{203805696686657466691568481369492008777607} a^{13} + \frac{7535637269847940518887958311039522819}{22645077409628607410174275707721334308623} a^{12} + \frac{374338173426481870343069790071057902499}{203805696686657466691568481369492008777607} a^{11} + \frac{8810065793091276203154518189878784707}{67935232228885822230522827123164002925869} a^{10} - \frac{404625363562072051424490087672290768249}{203805696686657466691568481369492008777607} a^{9} - \frac{211177503703049571172560145469346942815}{67935232228885822230522827123164002925869} a^{8} + \frac{3697299255485595054417229879700287877771}{203805696686657466691568481369492008777607} a^{7} - \frac{410929879113685394846489160863875863166}{22645077409628607410174275707721334308623} a^{6} - \frac{7094007992888620926373600784960968198664}{203805696686657466691568481369492008777607} a^{5} - \frac{2912218329841093521972574348416546722293}{67935232228885822230522827123164002925869} a^{4} - \frac{4174898338493226025638381134501723151592}{203805696686657466691568481369492008777607} a^{3} + \frac{324423834406593065129914659148145222161}{2342594214789166283811131969764275962961} a^{2} + \frac{56933026624127631855277269181153810294315}{203805696686657466691568481369492008777607} a + \frac{1989062079924139333150824580806998383358}{7548359136542869136724758569240444769541}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18124462468600000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.6.5955520696232429.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | $18$ | $18$ | R | $18$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 223 | Data not computed | ||||||
| 1051 | Data not computed | ||||||
| 10583273 | Data not computed | ||||||