Properties

Label 18.18.735...592.1
Degree $18$
Signature $[18, 0]$
Discriminant $7.356\times 10^{29}$
Root discriminant \(45.63\)
Ramified primes $2,19$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 38*x^16 + 608*x^14 - 5320*x^12 + 27664*x^10 - 86944*x^8 + 160512*x^6 - 160512*x^4 + 72960*x^2 - 9728)
 
gp: K = bnfinit(y^18 - 38*y^16 + 608*y^14 - 5320*y^12 + 27664*y^10 - 86944*y^8 + 160512*y^6 - 160512*y^4 + 72960*y^2 - 9728, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 38*x^16 + 608*x^14 - 5320*x^12 + 27664*x^10 - 86944*x^8 + 160512*x^6 - 160512*x^4 + 72960*x^2 - 9728);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 38*x^16 + 608*x^14 - 5320*x^12 + 27664*x^10 - 86944*x^8 + 160512*x^6 - 160512*x^4 + 72960*x^2 - 9728)
 

\( x^{18} - 38 x^{16} + 608 x^{14} - 5320 x^{12} + 27664 x^{10} - 86944 x^{8} + 160512 x^{6} - 160512 x^{4} + \cdots - 9728 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[18, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(735565072612935262326166126592\) \(\medspace = 2^{27}\cdot 19^{17}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.63\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}19^{17/18}\approx 45.630657614261125$
Ramified primes:   \(2\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{38}) \)
$\card{ \Gal(K/\Q) }$:  $18$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(152=2^{3}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{152}(1,·)$, $\chi_{152}(67,·)$, $\chi_{152}(147,·)$, $\chi_{152}(9,·)$, $\chi_{152}(75,·)$, $\chi_{152}(17,·)$, $\chi_{152}(3,·)$, $\chi_{152}(137,·)$, $\chi_{152}(25,·)$, $\chi_{152}(91,·)$, $\chi_{152}(27,·)$, $\chi_{152}(81,·)$, $\chi_{152}(107,·)$, $\chi_{152}(49,·)$, $\chi_{152}(51,·)$, $\chi_{152}(73,·)$, $\chi_{152}(121,·)$, $\chi_{152}(59,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{4}a^{5}$, $\frac{1}{8}a^{6}$, $\frac{1}{8}a^{7}$, $\frac{1}{16}a^{8}$, $\frac{1}{16}a^{9}$, $\frac{1}{32}a^{10}$, $\frac{1}{32}a^{11}$, $\frac{1}{64}a^{12}$, $\frac{1}{64}a^{13}$, $\frac{1}{128}a^{14}$, $\frac{1}{128}a^{15}$, $\frac{1}{256}a^{16}$, $\frac{1}{256}a^{17}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{16}a^{8}-a^{6}+5a^{4}-8a^{2}+2$, $\frac{1}{256}a^{16}-\frac{1}{8}a^{14}+\frac{105}{64}a^{12}-\frac{91}{8}a^{10}+\frac{715}{16}a^{8}-99a^{6}+\frac{231}{2}a^{4}-60a^{2}+9$, $\frac{1}{2}a^{2}-3$, $\frac{1}{32}a^{10}-\frac{5}{8}a^{8}+\frac{35}{8}a^{6}-\frac{25}{2}a^{4}+\frac{25}{2}a^{2}-2$, $\frac{1}{128}a^{14}-\frac{15}{64}a^{12}+\frac{45}{16}a^{10}-\frac{137}{8}a^{8}+\frac{441}{8}a^{6}-\frac{351}{4}a^{4}+\frac{111}{2}a^{2}-9$, $\frac{1}{128}a^{14}-\frac{7}{32}a^{12}+\frac{77}{32}a^{10}-\frac{105}{8}a^{8}+\frac{295}{8}a^{6}-\frac{203}{4}a^{4}+31a^{2}-6$, $\frac{1}{32}a^{10}-\frac{5}{8}a^{8}+\frac{9}{2}a^{6}-14a^{4}+\frac{35}{2}a^{2}-6$, $\frac{1}{2}a^{2}-2$, $\frac{1}{8}a^{6}+\frac{1}{4}a^{5}-\frac{5}{4}a^{4}-\frac{5}{2}a^{3}+\frac{5}{2}a^{2}+6a+2$, $\frac{1}{64}a^{12}-\frac{3}{8}a^{10}+\frac{27}{8}a^{8}+\frac{1}{8}a^{7}-14a^{6}-\frac{3}{2}a^{5}+\frac{105}{4}a^{4}+\frac{9}{2}a^{3}-\frac{35}{2}a^{2}-2a+2$, $\frac{1}{32}a^{10}+\frac{1}{16}a^{9}-\frac{9}{16}a^{8}-\frac{9}{8}a^{7}+\frac{27}{8}a^{6}+\frac{27}{4}a^{5}-\frac{15}{2}a^{4}-15a^{3}+\frac{9}{2}a^{2}+8a-2$, $\frac{1}{2}a^{2}+a-1$, $\frac{1}{32}a^{10}-\frac{5}{8}a^{8}+\frac{35}{8}a^{6}-\frac{1}{4}a^{5}-\frac{25}{2}a^{4}+\frac{5}{2}a^{3}+\frac{25}{2}a^{2}-5a-1$, $\frac{1}{128}a^{14}-\frac{7}{32}a^{12}+\frac{77}{32}a^{10}+\frac{1}{16}a^{9}-\frac{105}{8}a^{8}-\frac{9}{8}a^{7}+\frac{147}{4}a^{6}+\frac{13}{2}a^{5}-\frac{195}{4}a^{4}-\frac{25}{2}a^{3}+\frac{45}{2}a^{2}+4a-2$, $\frac{1}{256}a^{16}-\frac{1}{8}a^{14}+\frac{13}{8}a^{12}-\frac{1}{32}a^{11}-\frac{177}{16}a^{10}+\frac{11}{16}a^{9}+\frac{681}{16}a^{8}-\frac{43}{8}a^{7}-\frac{375}{4}a^{6}+\frac{35}{2}a^{5}+114a^{4}-\frac{41}{2}a^{3}-65a^{2}+4a+9$, $\frac{1}{256}a^{16}-\frac{1}{8}a^{14}+\frac{13}{8}a^{12}+\frac{1}{32}a^{11}-11a^{10}-\frac{11}{16}a^{9}+\frac{165}{4}a^{8}+\frac{11}{2}a^{7}-\frac{671}{8}a^{6}-\frac{39}{2}a^{5}+\frac{165}{2}a^{4}+30a^{3}-\frac{55}{2}a^{2}-16a-2$, $\frac{1}{128}a^{14}-\frac{1}{64}a^{13}-\frac{13}{64}a^{12}+\frac{13}{32}a^{11}+\frac{65}{32}a^{10}-\frac{65}{16}a^{9}-\frac{39}{4}a^{8}+\frac{39}{2}a^{7}+\frac{91}{4}a^{6}-\frac{91}{2}a^{5}-\frac{91}{4}a^{4}+\frac{91}{2}a^{3}+\frac{13}{2}a^{2}-12a-2$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1274691143.44 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 1274691143.44 \cdot 1}{2\cdot\sqrt{735565072612935262326166126592}}\cr\approx \mathstrut & 0.194806904339 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 38*x^16 + 608*x^14 - 5320*x^12 + 27664*x^10 - 86944*x^8 + 160512*x^6 - 160512*x^4 + 72960*x^2 - 9728)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 38*x^16 + 608*x^14 - 5320*x^12 + 27664*x^10 - 86944*x^8 + 160512*x^6 - 160512*x^4 + 72960*x^2 - 9728, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 38*x^16 + 608*x^14 - 5320*x^12 + 27664*x^10 - 86944*x^8 + 160512*x^6 - 160512*x^4 + 72960*x^2 - 9728);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 38*x^16 + 608*x^14 - 5320*x^12 + 27664*x^10 - 86944*x^8 + 160512*x^6 - 160512*x^4 + 72960*x^2 - 9728);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{18}$ (as 18T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{38}) \), 3.3.361.1, 6.6.1267762688.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $18$ $18$ ${\href{/padicField/7.6.0.1}{6} }^{3}$ ${\href{/padicField/11.3.0.1}{3} }^{6}$ ${\href{/padicField/13.9.0.1}{9} }^{2}$ ${\href{/padicField/17.9.0.1}{9} }^{2}$ R $18$ ${\href{/padicField/29.9.0.1}{9} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{6}$ ${\href{/padicField/37.1.0.1}{1} }^{18}$ $18$ ${\href{/padicField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/padicField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.27.118$x^{18} - 20 x^{17} + 262 x^{16} - 448 x^{15} - 6176 x^{14} + 33472 x^{13} + 381184 x^{12} + 1775360 x^{11} - 26524896 x^{10} - 40518016 x^{9} + 250659264 x^{8} + 956865536 x^{7} - 263783424 x^{6} - 3209602048 x^{5} - 5614871552 x^{4} - 16485806080 x^{3} - 37256698624 x^{2} - 144388781056 x - 459719889408$$2$$9$$27$$C_{18}$$[3]^{9}$
\(19\) Copy content Toggle raw display 19.18.17.14$x^{18} + 19$$18$$1$$17$$C_{18}$$[\ ]_{18}$