Normalized defining polynomial
\( x^{18} - x^{17} - 49 x^{16} + 50 x^{15} + 860 x^{14} - 903 x^{13} - 6901 x^{12} + 7833 x^{11} + 27250 x^{10} - 34628 x^{9} - 51037 x^{8} + 77678 x^{7} + 32656 x^{6} - 79772 x^{5} + 14070 x^{4} + 24745 x^{3} - 14301 x^{2} + 2835 x - 189 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72073334364588888282643007986957=7^{15}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(133=7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{133}(64,·)$, $\chi_{133}(1,·)$, $\chi_{133}(75,·)$, $\chi_{133}(132,·)$, $\chi_{133}(69,·)$, $\chi_{133}(11,·)$, $\chi_{133}(12,·)$, $\chi_{133}(27,·)$, $\chi_{133}(58,·)$, $\chi_{133}(30,·)$, $\chi_{133}(31,·)$, $\chi_{133}(102,·)$, $\chi_{133}(39,·)$, $\chi_{133}(106,·)$, $\chi_{133}(103,·)$, $\chi_{133}(94,·)$, $\chi_{133}(121,·)$, $\chi_{133}(122,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{797} a^{15} - \frac{252}{797} a^{14} + \frac{79}{797} a^{13} + \frac{267}{797} a^{12} + \frac{49}{797} a^{11} - \frac{58}{797} a^{10} + \frac{295}{797} a^{9} - \frac{247}{797} a^{8} + \frac{98}{797} a^{7} + \frac{105}{797} a^{6} + \frac{284}{797} a^{5} - \frac{70}{797} a^{4} + \frac{375}{797} a^{3} - \frac{165}{797} a^{2} - \frac{279}{797} a + \frac{371}{797}$, $\frac{1}{2101689} a^{16} - \frac{742}{2101689} a^{15} + \frac{871145}{2101689} a^{14} - \frac{40834}{2101689} a^{13} + \frac{602459}{2101689} a^{12} - \frac{70065}{233521} a^{11} - \frac{227122}{2101689} a^{10} + \frac{67565}{700563} a^{9} + \frac{395296}{2101689} a^{8} + \frac{174448}{2101689} a^{7} - \frac{868888}{2101689} a^{6} - \frac{774439}{2101689} a^{5} - \frac{991064}{2101689} a^{4} - \frac{827891}{2101689} a^{3} + \frac{40301}{233521} a^{2} + \frac{61366}{2101689} a + \frac{276800}{700563}$, $\frac{1}{1492445198900019729159} a^{17} + \frac{216813724319387}{1492445198900019729159} a^{16} + \frac{726145657278168170}{1492445198900019729159} a^{15} - \frac{253020351258456691210}{1492445198900019729159} a^{14} + \frac{504995610217600982657}{1492445198900019729159} a^{13} - \frac{197304508836533255915}{497481732966673243053} a^{12} - \frac{263165313266920737664}{1492445198900019729159} a^{11} - \frac{72990761203280209859}{165827244322224414351} a^{10} + \frac{134819257976635988599}{1492445198900019729159} a^{9} - \frac{177482834432331978242}{1492445198900019729159} a^{8} - \frac{1263057185453183005}{1492445198900019729159} a^{7} + \frac{423478686368630609357}{1492445198900019729159} a^{6} - \frac{284080585913995412834}{1492445198900019729159} a^{5} - \frac{161367927063320474480}{1492445198900019729159} a^{4} + \frac{139015995669249026192}{497481732966673243053} a^{3} + \frac{541397194760582349070}{1492445198900019729159} a^{2} + \frac{2477354121541934998}{497481732966673243053} a - \frac{20735911804747184714}{165827244322224414351}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15523352898.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{133}) \), 3.3.361.1, 3.3.17689.1, 3.3.17689.2, \(\Q(\zeta_{7})^+\), 6.6.849301957.1, 6.6.41615795893.2, 6.6.41615795893.1, 6.6.115279213.1, 9.9.5534900853769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19 | Data not computed | ||||||