Normalized defining polynomial
\( x^{18} - 60 x^{16} - x^{15} + 1458 x^{14} + 57 x^{13} - 18690 x^{12} - 1035 x^{11} + 137472 x^{10} + 8571 x^{9} - 588942 x^{8} - 37629 x^{7} + 1414748 x^{6} + 97803 x^{5} - 1705209 x^{4} - 152903 x^{3} + 775098 x^{2} + 83436 x - 2456 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70708970918051611315870587890625=3^{27}\cdot 5^{9}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(256,·)$, $\chi_{315}(1,·)$, $\chi_{315}(194,·)$, $\chi_{315}(269,·)$, $\chi_{315}(16,·)$, $\chi_{315}(209,·)$, $\chi_{315}(211,·)$, $\chi_{315}(151,·)$, $\chi_{315}(89,·)$, $\chi_{315}(226,·)$, $\chi_{315}(164,·)$, $\chi_{315}(104,·)$, $\chi_{315}(106,·)$, $\chi_{315}(299,·)$, $\chi_{315}(46,·)$, $\chi_{315}(121,·)$, $\chi_{315}(314,·)$, $\chi_{315}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{52} a^{15} + \frac{3}{26} a^{13} - \frac{1}{26} a^{12} + \frac{2}{13} a^{11} + \frac{5}{26} a^{10} - \frac{3}{13} a^{9} - \frac{3}{26} a^{8} - \frac{3}{13} a^{7} - \frac{4}{13} a^{6} + \frac{1}{13} a^{5} + \frac{1}{26} a^{4} + \frac{1}{13} a^{3} + \frac{1}{26} a^{2} + \frac{3}{52} a + \frac{7}{26}$, $\frac{1}{65468} a^{16} - \frac{77}{65468} a^{15} - \frac{3611}{32734} a^{14} + \frac{1681}{65468} a^{13} - \frac{1500}{16367} a^{12} - \frac{1165}{65468} a^{11} - \frac{2828}{16367} a^{10} + \frac{4545}{65468} a^{9} - \frac{6509}{32734} a^{8} - \frac{15901}{65468} a^{7} - \frac{4397}{16367} a^{6} + \frac{20585}{65468} a^{5} + \frac{12977}{32734} a^{4} - \frac{27879}{65468} a^{3} - \frac{437}{65468} a^{2} + \frac{2614}{16367} a - \frac{926}{16367}$, $\frac{1}{345334917061067119716649039856} a^{17} + \frac{665474350130746608959631}{172667458530533559858324519928} a^{16} - \frac{30408926208275904969034794}{21583432316316694982290564991} a^{15} + \frac{22967876107728282198431294335}{345334917061067119716649039856} a^{14} + \frac{3921872638082394301228053095}{43166864632633389964581129982} a^{13} + \frac{34617975947745129027417064345}{345334917061067119716649039856} a^{12} + \frac{4113929989637476548654159048}{21583432316316694982290564991} a^{11} + \frac{86122768002659511800683756749}{345334917061067119716649039856} a^{10} - \frac{12263581643671105901738045267}{172667458530533559858324519928} a^{9} - \frac{15189298302682956974991909265}{345334917061067119716649039856} a^{8} - \frac{5799468352961610348360338707}{43166864632633389964581129982} a^{7} + \frac{34420073568047180237394609475}{345334917061067119716649039856} a^{6} - \frac{90745941701635872003483601}{455586961821988284586608232} a^{5} + \frac{52149001846165159495279955767}{345334917061067119716649039856} a^{4} + \frac{45396021563057010140003581669}{345334917061067119716649039856} a^{3} + \frac{85287823107405117388053173215}{345334917061067119716649039856} a^{2} + \frac{5481499540388894329508565506}{21583432316316694982290564991} a - \frac{37762169895384127163147411789}{86333729265266779929162259964}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9362411700.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{105}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.6.843908625.1, 6.6.41351522625.2, 6.6.56723625.1, 6.6.41351522625.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||