Normalized defining polynomial
\( x^{18} - 54 x^{16} + 1215 x^{14} - 14742 x^{12} + 104247 x^{10} - 136 x^{9} - 433026 x^{8} + 3672 x^{7} + 1010394 x^{6} - 33048 x^{5} - 1180980 x^{4} + 110160 x^{3} + 531441 x^{2} - 99144 x - 40553 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6966114824903498893840251683313=3^{45}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(297=3^{3}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{297}(1,·)$, $\chi_{297}(67,·)$, $\chi_{297}(133,·)$, $\chi_{297}(65,·)$, $\chi_{297}(265,·)$, $\chi_{297}(34,·)$, $\chi_{297}(131,·)$, $\chi_{297}(100,·)$, $\chi_{297}(199,·)$, $\chi_{297}(197,·)$, $\chi_{297}(32,·)$, $\chi_{297}(98,·)$, $\chi_{297}(164,·)$, $\chi_{297}(166,·)$, $\chi_{297}(230,·)$, $\chi_{297}(232,·)$, $\chi_{297}(263,·)$, $\chi_{297}(296,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{74} a^{9} - \frac{27}{74} a^{7} + \frac{21}{74} a^{5} + \frac{2}{37} a^{3} - \frac{11}{74} a - \frac{31}{74}$, $\frac{1}{74} a^{10} - \frac{27}{74} a^{8} + \frac{21}{74} a^{6} + \frac{2}{37} a^{4} - \frac{11}{74} a^{2} - \frac{31}{74} a$, $\frac{1}{74} a^{11} + \frac{16}{37} a^{7} - \frac{21}{74} a^{5} + \frac{23}{74} a^{3} - \frac{31}{74} a^{2} - \frac{1}{74} a - \frac{23}{74}$, $\frac{1}{74} a^{12} + \frac{16}{37} a^{8} - \frac{21}{74} a^{6} + \frac{23}{74} a^{4} - \frac{31}{74} a^{3} - \frac{1}{74} a^{2} - \frac{23}{74} a$, $\frac{1}{74} a^{13} + \frac{29}{74} a^{7} + \frac{17}{74} a^{5} - \frac{31}{74} a^{4} + \frac{19}{74} a^{3} - \frac{23}{74} a^{2} - \frac{9}{37} a + \frac{15}{37}$, $\frac{1}{87838} a^{14} - \frac{206}{43919} a^{13} - \frac{21}{43919} a^{12} - \frac{275}{43919} a^{11} - \frac{247}{43919} a^{10} - \frac{59}{87838} a^{9} + \frac{26379}{87838} a^{8} - \frac{32099}{87838} a^{7} - \frac{1113}{87838} a^{6} - \frac{15937}{43919} a^{5} + \frac{31901}{87838} a^{4} + \frac{26445}{87838} a^{3} - \frac{4099}{43919} a^{2} + \frac{9015}{87838} a - \frac{41171}{87838}$, $\frac{1}{87838} a^{15} - \frac{45}{87838} a^{13} - \frac{49}{87838} a^{12} - \frac{377}{87838} a^{11} + \frac{577}{87838} a^{10} - \frac{303}{87838} a^{9} + \frac{8235}{87838} a^{8} - \frac{9076}{43919} a^{7} - \frac{2573}{87838} a^{6} - \frac{5203}{87838} a^{5} - \frac{35}{2374} a^{4} - \frac{32071}{87838} a^{3} + \frac{18471}{43919} a^{2} + \frac{2805}{87838} a + \frac{29453}{87838}$, $\frac{1}{87838} a^{16} + \frac{403}{87838} a^{13} + \frac{107}{87838} a^{12} - \frac{433}{87838} a^{11} + \frac{10}{43919} a^{10} - \frac{355}{87838} a^{9} + \frac{10537}{43919} a^{8} + \frac{23665}{87838} a^{7} + \frac{17119}{87838} a^{6} + \frac{10412}{43919} a^{5} - \frac{3341}{43919} a^{4} + \frac{16227}{87838} a^{3} - \frac{16279}{43919} a^{2} - \frac{2031}{43919} a + \frac{11976}{43919}$, $\frac{1}{87838} a^{17} - \frac{1}{2374} a^{13} - \frac{125}{87838} a^{12} - \frac{299}{87838} a^{11} + \frac{249}{43919} a^{10} - \frac{255}{87838} a^{9} + \frac{10643}{87838} a^{8} - \frac{17569}{43919} a^{7} - \frac{3312}{43919} a^{6} + \frac{24875}{87838} a^{5} + \frac{4106}{43919} a^{4} + \frac{1895}{43919} a^{3} + \frac{18928}{43919} a^{2} + \frac{39745}{87838} a + \frac{7729}{43919}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4187524895.96 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\zeta_{9})^+\), 6.6.26198073.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | R | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||