Normalized defining polynomial
\( x^{18} - 8 x^{17} - 9 x^{16} + 213 x^{15} - 249 x^{14} - 2020 x^{13} + 4422 x^{12} + 7669 x^{11} - 26546 x^{10} - 4533 x^{9} + 68371 x^{8} - 38195 x^{7} - 60791 x^{6} + 69407 x^{5} - 10013 x^{4} - 11870 x^{3} + 4352 x^{2} - 225 x - 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67720078057235840614713990737=61^{4}\cdot 257^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{35} a^{15} - \frac{1}{35} a^{14} + \frac{9}{35} a^{13} + \frac{2}{7} a^{12} - \frac{2}{5} a^{11} - \frac{12}{35} a^{10} - \frac{11}{35} a^{9} + \frac{12}{35} a^{8} - \frac{2}{7} a^{7} + \frac{17}{35} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{4}{35} a^{2} + \frac{8}{35} a + \frac{3}{7}$, $\frac{1}{1505} a^{16} - \frac{1}{301} a^{15} + \frac{111}{1505} a^{14} - \frac{12}{35} a^{13} - \frac{572}{1505} a^{12} - \frac{124}{1505} a^{11} + \frac{317}{1505} a^{10} - \frac{17}{43} a^{9} - \frac{457}{1505} a^{8} + \frac{502}{1505} a^{7} - \frac{676}{1505} a^{6} + \frac{414}{1505} a^{5} + \frac{293}{1505} a^{4} - \frac{201}{1505} a^{3} - \frac{11}{35} a^{2} + \frac{39}{1505} a + \frac{51}{301}$, $\frac{1}{653919922293895900685} a^{17} + \frac{79932507341759406}{653919922293895900685} a^{16} - \frac{300166089844509213}{653919922293895900685} a^{15} - \frac{1953286797160049443}{93417131756270842955} a^{14} + \frac{12495751178070635236}{653919922293895900685} a^{13} - \frac{4491246934869042231}{653919922293895900685} a^{12} + \frac{288786734697997490494}{653919922293895900685} a^{11} - \frac{21351232662627313252}{130783984458779180137} a^{10} - \frac{104578617649997965283}{653919922293895900685} a^{9} + \frac{311569129704260842982}{653919922293895900685} a^{8} - \frac{20433502487176979602}{93417131756270842955} a^{7} - \frac{158640924510283337532}{653919922293895900685} a^{6} + \frac{240688513818841325999}{653919922293895900685} a^{5} + \frac{31526771778320046866}{93417131756270842955} a^{4} + \frac{5779879465634849873}{93417131756270842955} a^{3} - \frac{91079142601744119078}{653919922293895900685} a^{2} - \frac{40774836509852722599}{93417131756270842955} a - \frac{20864314041324405208}{130783984458779180137}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 362512473.892 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\wr S_3$ (as 18T86):
| A solvable group of order 162 |
| The 22 conjugacy class representatives for $C_3\wr S_3$ |
| Character table for $C_3\wr S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{257}) \), 3.3.257.1 x3, 6.6.16974593.1, 9.9.63162460553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 257 | Data not computed | ||||||