Normalized defining polynomial
\( x^{18} - 61 x^{16} - 7 x^{15} + 1313 x^{14} + 413 x^{13} - 12078 x^{12} - 6240 x^{11} + 47140 x^{10} + 21928 x^{9} - 87762 x^{8} - 25896 x^{7} + 76097 x^{6} + 8710 x^{5} - 25638 x^{4} - 302 x^{3} + 2705 x^{2} - 155 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(676448880473573509966951229297389=61^{3}\cdot 1129^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{33} a^{16} - \frac{5}{33} a^{15} - \frac{7}{33} a^{14} + \frac{5}{11} a^{13} + \frac{4}{11} a^{12} - \frac{4}{33} a^{11} + \frac{5}{33} a^{10} - \frac{4}{11} a^{9} - \frac{10}{33} a^{8} + \frac{5}{11} a^{7} + \frac{16}{33} a^{6} + \frac{1}{33} a^{5} - \frac{4}{33} a^{4} + \frac{14}{33} a^{3} + \frac{5}{11} a^{2} - \frac{4}{33} a - \frac{8}{33}$, $\frac{1}{366211228480297973472869537336397} a^{17} + \frac{5349806615973234827954524460024}{366211228480297973472869537336397} a^{16} + \frac{42107449838530861576700677841312}{122070409493432657824289845778799} a^{15} - \frac{179700856987429546208507773492555}{366211228480297973472869537336397} a^{14} - \frac{16628978918760725587689784397693}{40690136497810885941429948592933} a^{13} + \frac{11720648276359370646246966125051}{366211228480297973472869537336397} a^{12} + \frac{151357229523141129659701533371596}{366211228480297973472869537336397} a^{11} + \frac{170232154293449592424712153980478}{366211228480297973472869537336397} a^{10} + \frac{25866190637878776941313768633653}{366211228480297973472869537336397} a^{9} - \frac{148368081874711734334305929126341}{366211228480297973472869537336397} a^{8} + \frac{75481186440363901124235960333442}{366211228480297973472869537336397} a^{7} + \frac{11908837420017467606314288189945}{33291929861845270315715412485127} a^{6} - \frac{27148354335116520525141597962924}{122070409493432657824289845778799} a^{5} - \frac{52040000034655265751936983057579}{366211228480297973472869537336397} a^{4} + \frac{13594001024184534185532755583749}{28170094498484459497913041333569} a^{3} + \frac{84791810446454188494388648009304}{366211228480297973472869537336397} a^{2} - \frac{42782714349485415120757202483825}{122070409493432657824289845778799} a + \frac{69763554723666012755337937053310}{366211228480297973472869537336397}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24555150983.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:D_9$ (as 18T67):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_2^2:D_9$ |
| Character table for $C_2\times C_2^2:D_9$ |
Intermediate fields
| 3.3.1129.1, 6.6.87783251029.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 1129 | Data not computed | ||||||