Properties

Label 18.18.6674087489...3125.1
Degree $18$
Signature $[18, 0]$
Discriminant $5^{9}\cdot 3881^{6}$
Root discriminant $35.14$
Ramified primes $5, 3881$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_3\wr C_2$ (as 18T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-125, 0, 1725, 0, -8330, 0, 17336, 0, -17803, 0, 9602, 0, -2812, 0, 441, 0, -34, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 34*x^16 + 441*x^14 - 2812*x^12 + 9602*x^10 - 17803*x^8 + 17336*x^6 - 8330*x^4 + 1725*x^2 - 125)
 
gp: K = bnfinit(x^18 - 34*x^16 + 441*x^14 - 2812*x^12 + 9602*x^10 - 17803*x^8 + 17336*x^6 - 8330*x^4 + 1725*x^2 - 125, 1)
 

Normalized defining polynomial

\( x^{18} - 34 x^{16} + 441 x^{14} - 2812 x^{12} + 9602 x^{10} - 17803 x^{8} + 17336 x^{6} - 8330 x^{4} + 1725 x^{2} - 125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6674087489718598592345703125=5^{9}\cdot 3881^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 3881$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{14} + \frac{1}{10} a^{12} + \frac{1}{10} a^{10} + \frac{3}{10} a^{8} - \frac{1}{2} a^{7} - \frac{3}{10} a^{6} - \frac{3}{10} a^{4} + \frac{1}{10} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{15} + \frac{1}{10} a^{13} + \frac{1}{10} a^{11} - \frac{1}{5} a^{9} - \frac{1}{2} a^{8} + \frac{1}{5} a^{7} - \frac{3}{10} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} - \frac{1}{2}$, $\frac{1}{69683450} a^{16} - \frac{411387}{34841725} a^{14} - \frac{284048}{1833775} a^{12} + \frac{897117}{3667550} a^{10} - \frac{27290643}{69683450} a^{8} + \frac{7960271}{34841725} a^{6} - \frac{1}{2} a^{5} - \frac{33769519}{69683450} a^{4} + \frac{2172501}{13936690} a^{2} - \frac{207486}{1393669}$, $\frac{1}{69683450} a^{17} - \frac{411387}{34841725} a^{15} - \frac{284048}{1833775} a^{13} + \frac{897117}{3667550} a^{11} + \frac{3775541}{34841725} a^{9} - \frac{18921183}{69683450} a^{7} - \frac{1}{2} a^{6} - \frac{33769519}{69683450} a^{5} - \frac{1}{2} a^{4} + \frac{2172501}{13936690} a^{3} + \frac{978697}{2787338} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 113560017.765 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 18T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $S_3\wr C_2$
Character table for $S_3\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), 6.6.485125.1 x2, 9.9.7307030855125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: 6.6.292281234205.1, 6.6.485125.1
Degree 9 sibling: 9.9.7307030855125.1
Degree 12 siblings: Deg 12, 12.12.913378856890625.1, Deg 12, Deg 12, Deg 12, Deg 12
Degree 18 siblings: Deg 18, Deg 18

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.1$x^{6} - 10 x^{4} + 25 x^{2} - 500$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3881Data not computed