Normalized defining polynomial
\( x^{18} - 61 x^{16} + 1484 x^{14} - 18248 x^{12} + 117886 x^{10} - 371682 x^{8} + 451164 x^{6} - 168432 x^{4} + 14553 x^{2} - 297 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(658491794966495684087373619003392=2^{28}\cdot 3^{15}\cdot 11^{5}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{4} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{7}{16} a^{2} - \frac{5}{16}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} + \frac{5}{32} a^{3} + \frac{11}{32} a^{2} + \frac{7}{32} a + \frac{9}{32}$, $\frac{1}{64} a^{12} + \frac{1}{64} a^{8} - \frac{1}{16} a^{6} - \frac{1}{64} a^{4} + \frac{5}{16} a^{2} + \frac{15}{64}$, $\frac{1}{128} a^{13} - \frac{1}{128} a^{12} - \frac{1}{32} a^{10} + \frac{1}{128} a^{9} + \frac{3}{128} a^{8} - \frac{1}{32} a^{7} - \frac{1}{32} a^{6} - \frac{1}{128} a^{5} + \frac{25}{128} a^{4} + \frac{5}{32} a^{3} - \frac{5}{16} a^{2} - \frac{49}{128} a - \frac{11}{128}$, $\frac{1}{384} a^{14} - \frac{1}{384} a^{12} - \frac{7}{384} a^{10} + \frac{19}{384} a^{8} + \frac{19}{384} a^{6} + \frac{23}{128} a^{4} + \frac{17}{128} a^{2} + \frac{35}{128}$, $\frac{1}{768} a^{15} - \frac{1}{768} a^{14} - \frac{1}{768} a^{13} + \frac{1}{768} a^{12} - \frac{7}{768} a^{11} - \frac{17}{768} a^{10} - \frac{29}{768} a^{9} - \frac{43}{768} a^{8} - \frac{77}{768} a^{7} + \frac{29}{768} a^{6} + \frac{23}{256} a^{5} - \frac{39}{256} a^{4} - \frac{15}{256} a^{3} - \frac{25}{256} a^{2} - \frac{13}{256} a - \frac{11}{256}$, $\frac{1}{21840486912} a^{16} + \frac{13409887}{10920243456} a^{14} + \frac{75524599}{10920243456} a^{12} - \frac{283560499}{10920243456} a^{10} - \frac{1}{16} a^{9} - \frac{24654755}{5460121728} a^{8} - \frac{1}{8} a^{7} - \frac{412832261}{3640081152} a^{6} - \frac{439418785}{3640081152} a^{4} - \frac{1}{8} a^{3} - \frac{1481041087}{3640081152} a^{2} - \frac{3}{16} a + \frac{216214987}{2426720768}$, $\frac{1}{21840486912} a^{17} - \frac{202295}{2730060864} a^{15} - \frac{1}{768} a^{14} + \frac{276829}{682515216} a^{13} - \frac{5}{768} a^{12} + \frac{78615289}{5460121728} a^{11} - \frac{17}{768} a^{10} - \frac{63528577}{10920243456} a^{9} - \frac{1}{768} a^{8} + \frac{12224225}{151670048} a^{7} - \frac{43}{768} a^{6} + \frac{49938271}{455010144} a^{5} + \frac{27}{256} a^{4} + \frac{276142747}{1820040576} a^{3} - \frac{97}{256} a^{2} - \frac{20769463}{2426720768} a - \frac{57}{256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 280306728522 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 70 conjugacy class representatives for t18n487 are not computed |
| Character table for t18n487 is not computed |
Intermediate fields
| 3.3.404.1, 6.6.193900608.1, 9.9.372251938443264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.12.22.106 | $x^{12} - 2 x^{11} + 4 x^{9} + 4 x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{3} - 2 x^{2} - 2$ | $12$ | $1$ | $22$ | 12T67 | $[4/3, 4/3, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.6.9.12 | $x^{6} + 3 x^{4} + 3$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.5.2 | $x^{6} + 33$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |