Normalized defining polynomial
\( x^{18} - x^{17} - 36 x^{16} + 46 x^{15} + 499 x^{14} - 737 x^{13} - 3454 x^{12} + 5671 x^{11} + 12782 x^{10} - 23129 x^{9} - 24800 x^{8} + 50687 x^{7} + 22166 x^{6} - 56919 x^{5} - 4663 x^{4} + 28402 x^{3} - 2838 x^{2} - 4491 x + 783 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65394345253249896031868291190784=2^{12}\cdot 11^{6}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{12} - \frac{1}{9} a^{10} - \frac{2}{9} a^{9} + \frac{2}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{567} a^{15} - \frac{1}{189} a^{14} - \frac{11}{567} a^{13} - \frac{10}{189} a^{12} - \frac{94}{567} a^{11} + \frac{88}{567} a^{10} - \frac{31}{81} a^{9} - \frac{29}{189} a^{8} + \frac{122}{567} a^{7} + \frac{125}{567} a^{6} - \frac{265}{567} a^{5} + \frac{206}{567} a^{4} + \frac{254}{567} a^{3} + \frac{85}{189} a^{2} + \frac{10}{63} a - \frac{8}{21}$, $\frac{1}{13041} a^{16} + \frac{5}{13041} a^{15} + \frac{103}{1863} a^{14} - \frac{1630}{13041} a^{13} + \frac{422}{13041} a^{12} + \frac{848}{13041} a^{11} + \frac{1999}{13041} a^{10} - \frac{3146}{13041} a^{9} - \frac{109}{1863} a^{8} - \frac{641}{4347} a^{7} + \frac{188}{621} a^{6} + \frac{1504}{4347} a^{5} - \frac{752}{4347} a^{4} - \frac{4895}{13041} a^{3} + \frac{269}{4347} a^{2} - \frac{7}{207} a + \frac{62}{483}$, $\frac{1}{143109104103} a^{17} - \frac{1610743}{47703034701} a^{16} - \frac{11001637}{20444157729} a^{15} + \frac{336627631}{6814719243} a^{14} + \frac{7574059727}{47703034701} a^{13} - \frac{8402859518}{143109104103} a^{12} - \frac{8924280524}{143109104103} a^{11} + \frac{18696493885}{143109104103} a^{10} + \frac{61969391767}{143109104103} a^{9} + \frac{60216934016}{143109104103} a^{8} - \frac{24202202123}{143109104103} a^{7} + \frac{65929635337}{143109104103} a^{6} - \frac{26442482648}{143109104103} a^{5} + \frac{5908615784}{143109104103} a^{4} + \frac{5516496770}{20444157729} a^{3} - \frac{8866405826}{47703034701} a^{2} + \frac{7401385843}{15901011567} a - \frac{1084354667}{5300337189}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17401289397.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times A_4$ (as 18T31):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $S_3\times A_4$ |
| Character table for $S_3\times A_4$ |
Intermediate fields
| 3.3.1369.1, 3.3.148.1, 6.6.226773481.1, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |