Normalized defining polynomial
\( x^{18} - 9 x^{17} - 42 x^{16} + 498 x^{15} + 231 x^{14} - 8343 x^{13} + 2989 x^{12} + 59949 x^{11} - 20253 x^{10} - 226761 x^{9} + 8409 x^{8} + 452259 x^{7} + 153052 x^{6} - 375174 x^{5} - 264699 x^{4} + 1605 x^{3} + 26424 x^{2} + 2088 x + 12 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6523520634696466078625264232972681216=2^{20}\cdot 3^{33}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{38} a^{16} - \frac{7}{19} a^{15} - \frac{9}{19} a^{14} + \frac{8}{19} a^{13} - \frac{9}{38} a^{12} + \frac{5}{19} a^{11} + \frac{9}{38} a^{10} + \frac{6}{19} a^{9} - \frac{17}{38} a^{8} + \frac{6}{19} a^{7} + \frac{11}{38} a^{6} - \frac{8}{19} a^{5} + \frac{9}{19} a^{4} + \frac{17}{38} a^{2} - \frac{4}{19}$, $\frac{1}{1583986859149165483659369813438161582} a^{17} - \frac{5435432679565093249648713016925010}{791993429574582741829684906719080791} a^{16} - \frac{237717458283921924827696075513889306}{791993429574582741829684906719080791} a^{15} - \frac{69990710054213539418691831831811247}{791993429574582741829684906719080791} a^{14} + \frac{133904624032419481947387726112604463}{1583986859149165483659369813438161582} a^{13} - \frac{343955218755545533691314302594845491}{791993429574582741829684906719080791} a^{12} + \frac{782854512150961781212373333202058033}{1583986859149165483659369813438161582} a^{11} - \frac{292997963425903109189662971069044139}{791993429574582741829684906719080791} a^{10} - \frac{530743445181635202135032282438004529}{1583986859149165483659369813438161582} a^{9} - \frac{3048504754732896314916348487641897}{41683864714451723254193942458898989} a^{8} - \frac{263879060371033443763622395412625911}{1583986859149165483659369813438161582} a^{7} + \frac{150153971558037224418034503888420623}{791993429574582741829684906719080791} a^{6} + \frac{8510809461502842885344450168291454}{41683864714451723254193942458898989} a^{5} - \frac{146162589484457578327801623829515403}{791993429574582741829684906719080791} a^{4} - \frac{108101298001967522551013465486092143}{1583986859149165483659369813438161582} a^{3} - \frac{178115648163093459326134137991100530}{791993429574582741829684906719080791} a^{2} + \frac{205052864976792151678610843186921729}{791993429574582741829684906719080791} a - \frac{11425537682426427795984560200588503}{791993429574582741829684906719080791}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5751301540210 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3:S_4$ |
| Character table for $C_3:S_4$ |
Intermediate fields
| 3.3.564.1, 3.3.45684.2, 3.3.45684.1, 3.3.11421.1, 6.6.294270927696.3, 9.9.13443473060864064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.16.18 | $x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$ | $6$ | $2$ | $16$ | $C_3 : C_4$ | $[2]_{3}^{2}$ | |
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 47 | Data not computed | ||||||