Normalized defining polynomial
\( x^{18} - 4 x^{17} - 55 x^{16} + 210 x^{15} + 1223 x^{14} - 4226 x^{13} - 14609 x^{12} + 41214 x^{11} + 104926 x^{10} - 201906 x^{9} - 460148 x^{8} + 450704 x^{7} + 1110410 x^{6} - 276264 x^{5} - 1176184 x^{4} - 222560 x^{3} + 287632 x^{2} + 58512 x - 17352 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(649665596506914089007541014591700992=2^{24}\cdot 3^{17}\cdot 7^{10}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{11} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{13} + \frac{1}{6} a^{12} - \frac{1}{4} a^{11} - \frac{1}{6} a^{10} - \frac{1}{12} a^{9} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{16} + \frac{1}{24} a^{14} + \frac{1}{8} a^{12} - \frac{1}{6} a^{11} - \frac{5}{24} a^{10} + \frac{1}{12} a^{8} - \frac{1}{2} a^{7} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} - \frac{1}{3} a^{2} + \frac{1}{6} a$, $\frac{1}{32133051598990240216980312} a^{17} - \frac{153617339703533227427}{765072657118815243261436} a^{16} - \frac{551188365690190942577303}{32133051598990240216980312} a^{15} + \frac{608079879738613429069967}{16066525799495120108490156} a^{14} + \frac{180038439043892915167909}{4590435942712891459568616} a^{13} - \frac{1793781710752103131091549}{16066525799495120108490156} a^{12} - \frac{2225007673822267549632195}{10711017199663413405660104} a^{11} + \frac{3868481664078055160434075}{16066525799495120108490156} a^{10} - \frac{2024548510820231305504943}{16066525799495120108490156} a^{9} + \frac{2600503896904180373621747}{8033262899747560054245078} a^{8} - \frac{890567715973696625661967}{8033262899747560054245078} a^{7} + \frac{1273878426571660715129630}{4016631449873780027122539} a^{6} - \frac{1916204763504049904812233}{5355508599831706702830052} a^{5} + \frac{2919807472803498309641737}{8033262899747560054245078} a^{4} - \frac{373084350835479272610262}{4016631449873780027122539} a^{3} + \frac{2706244593979963584156551}{8033262899747560054245078} a^{2} + \frac{1087213709694016660896362}{4016631449873780027122539} a - \frac{443755395594167214554125}{1338877149957926675707513}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11607696293900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T153):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.404.1, 6.6.3454956288.1, 9.9.5539939488857088.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.12.14.3 | $x^{12} - 12 x^{11} + 3 x^{10} - 9 x^{7} - 6 x^{6} - 9 x^{3} + 9 x^{2} - 9$ | $6$ | $2$ | $14$ | $S_3 \times C_4$ | $[3/2]_{2}^{4}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.12.10.6 | $x^{12} - 217 x^{6} + 11907$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |
| 101 | Data not computed | ||||||