Normalized defining polynomial
\( x^{18} - 3 x^{17} - 44 x^{16} + 119 x^{15} + 709 x^{14} - 1665 x^{13} - 5490 x^{12} + 10595 x^{11} + 22609 x^{10} - 32862 x^{9} - 51161 x^{8} + 47600 x^{7} + 61756 x^{6} - 27278 x^{5} - 33166 x^{4} + 3653 x^{3} + 5802 x^{2} + 855 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(629834936354696841143908203125=5^{9}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(256,·)$, $\chi_{455}(1,·)$, $\chi_{455}(386,·)$, $\chi_{455}(261,·)$, $\chi_{455}(326,·)$, $\chi_{455}(9,·)$, $\chi_{455}(74,·)$, $\chi_{455}(204,·)$, $\chi_{455}(79,·)$, $\chi_{455}(16,·)$, $\chi_{455}(81,·)$, $\chi_{455}(274,·)$, $\chi_{455}(211,·)$, $\chi_{455}(29,·)$, $\chi_{455}(289,·)$, $\chi_{455}(354,·)$, $\chi_{455}(144,·)$, $\chi_{455}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7221800709783303356449094441} a^{17} + \frac{1493932516236388646398169725}{7221800709783303356449094441} a^{16} - \frac{1001630244059772906127245623}{7221800709783303356449094441} a^{15} - \frac{1809033464762245459950923790}{7221800709783303356449094441} a^{14} + \frac{1514924199254007379548817043}{7221800709783303356449094441} a^{13} - \frac{2304724186199734489774064102}{7221800709783303356449094441} a^{12} + \frac{152093471486647529537120380}{7221800709783303356449094441} a^{11} - \frac{3439271246226345247363439286}{7221800709783303356449094441} a^{10} - \frac{3213311786542134685606189121}{7221800709783303356449094441} a^{9} - \frac{122939315278969138355133952}{7221800709783303356449094441} a^{8} + \frac{2250025051915986381978577529}{7221800709783303356449094441} a^{7} - \frac{2644726428249349914946644720}{7221800709783303356449094441} a^{6} - \frac{2687523150722624377785371137}{7221800709783303356449094441} a^{5} - \frac{598658815763909289161176908}{7221800709783303356449094441} a^{4} + \frac{2546277371750837404276083792}{7221800709783303356449094441} a^{3} + \frac{1713506642614156722627031902}{7221800709783303356449094441} a^{2} - \frac{2718685002378467476777260737}{7221800709783303356449094441} a - \frac{3181589512211668260174480904}{7221800709783303356449094441}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 774354039.422 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.8281.1, 3.3.8281.2, 3.3.169.1, \(\Q(\zeta_{7})^+\), 6.6.8571870125.2, 6.6.8571870125.1, 6.6.3570125.1, 6.6.300125.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |