Normalized defining polynomial
\( x^{18} - 628 x^{16} + 129096 x^{14} - 13334542 x^{12} + 800495088 x^{10} - 29538867680 x^{8} + 675706834748 x^{6} - 9269088389392 x^{4} + 69227150021088 x^{2} - 214233033727976 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(626505509942454520199576299631626650927497216=2^{33}\cdot 37^{9}\cdot 101^{6}\cdot 22993^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $308.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 101, 22993$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{2} a$, $\frac{1}{296} a^{14} + \frac{1}{296} a^{12} - \frac{17}{148} a^{10} + \frac{9}{74} a^{8} - \frac{15}{74} a^{6} - \frac{29}{74} a^{4} - \frac{27}{74} a^{2} - \frac{1}{2}$, $\frac{1}{296} a^{15} + \frac{1}{296} a^{13} - \frac{17}{148} a^{11} + \frac{9}{74} a^{9} - \frac{15}{74} a^{7} - \frac{29}{74} a^{5} - \frac{27}{74} a^{3} - \frac{1}{2} a$, $\frac{1}{22139200185234266060732215411364925033976048} a^{16} + \frac{16876766250880703389270811233446901915111}{11069600092617133030366107705682462516988024} a^{14} - \frac{263783987773039399936161090666006859567333}{11069600092617133030366107705682462516988024} a^{12} - \frac{169713165925029210740936503088881113055421}{5534800046308566515183053852841231258494012} a^{10} - \frac{125233648652036999522752137000154061896239}{5534800046308566515183053852841231258494012} a^{8} - \frac{277662525681394173375191482029762377817617}{1383700011577141628795763463210307814623503} a^{6} - \frac{263503003743222095758968338294289192866783}{5534800046308566515183053852841231258494012} a^{4} - \frac{13313997673812835862676841181092799957096}{37397297610193016994480093600278589584419} a^{2} - \frac{34049220120567090416569162891136737}{87916998499409378399489606355585518}$, $\frac{1}{22139200185234266060732215411364925033976048} a^{17} + \frac{16876766250880703389270811233446901915111}{11069600092617133030366107705682462516988024} a^{15} - \frac{263783987773039399936161090666006859567333}{11069600092617133030366107705682462516988024} a^{13} - \frac{169713165925029210740936503088881113055421}{5534800046308566515183053852841231258494012} a^{11} - \frac{125233648652036999522752137000154061896239}{5534800046308566515183053852841231258494012} a^{9} - \frac{277662525681394173375191482029762377817617}{1383700011577141628795763463210307814623503} a^{7} - \frac{263503003743222095758968338294289192866783}{5534800046308566515183053852841231258494012} a^{5} - \frac{13313997673812835862676841181092799957096}{37397297610193016994480093600278589584419} a^{3} - \frac{34049220120567090416569162891136737}{87916998499409378399489606355585518} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28423112978300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 60 conjugacy class representatives for t18n461 are not computed |
| Character table for t18n461 is not computed |
Intermediate fields
| 3.3.148.1, 3.3.404.1, 9.9.3340021539392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.2 | $x^{6} + 6 x^{4} + 14$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[4/3, 4/3, 3]_{3}^{2}$ |
| 2.12.22.41 | $x^{12} + 56 x^{10} + 48 x^{8} - 60 x^{6} + 48 x^{4} + 64 x^{2} + 52$ | $6$ | $2$ | $22$ | 12T30 | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $101$ | 101.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 22993 | Data not computed | ||||||