Properties

Label 18.18.6217529311...2176.1
Degree $18$
Signature $[18, 0]$
Discriminant $2^{18}\cdot 7^{14}\cdot 769^{4}$
Root discriminant $39.78$
Ramified primes $2, 7, 769$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T473

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-49, 0, 2254, 0, -9016, 0, 15239, 0, -13685, 0, 7021, 0, -2085, 0, 349, 0, -30, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 30*x^16 + 349*x^14 - 2085*x^12 + 7021*x^10 - 13685*x^8 + 15239*x^6 - 9016*x^4 + 2254*x^2 - 49)
 
gp: K = bnfinit(x^18 - 30*x^16 + 349*x^14 - 2085*x^12 + 7021*x^10 - 13685*x^8 + 15239*x^6 - 9016*x^4 + 2254*x^2 - 49, 1)
 

Normalized defining polynomial

\( x^{18} - 30 x^{16} + 349 x^{14} - 2085 x^{12} + 7021 x^{10} - 13685 x^{8} + 15239 x^{6} - 9016 x^{4} + 2254 x^{2} - 49 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(62175293115232802505366962176=2^{18}\cdot 7^{14}\cdot 769^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 769$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{10} - \frac{1}{7} a^{8} + \frac{1}{7} a^{6}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{11} - \frac{1}{7} a^{9} + \frac{1}{7} a^{7}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{10} - \frac{1}{7} a^{8} + \frac{2}{7} a^{6}$, $\frac{1}{7} a^{15} + \frac{2}{7} a^{11} - \frac{1}{7} a^{9} + \frac{2}{7} a^{7}$, $\frac{1}{93191} a^{16} + \frac{375}{13313} a^{14} - \frac{6288}{93191} a^{12} + \frac{5388}{13313} a^{10} - \frac{24011}{93191} a^{8} + \frac{6380}{93191} a^{6} - \frac{2848}{13313} a^{4} - \frac{944}{13313} a^{2} - \frac{3154}{13313}$, $\frac{1}{93191} a^{17} + \frac{375}{13313} a^{15} - \frac{6288}{93191} a^{13} + \frac{5388}{13313} a^{11} - \frac{24011}{93191} a^{9} + \frac{6380}{93191} a^{7} - \frac{2848}{13313} a^{5} - \frac{944}{13313} a^{3} - \frac{3154}{13313} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 385386618.341 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T473:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5184
The 32 conjugacy class representatives for t18n473
Character table for t18n473 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.69573030289.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
769Data not computed