Normalized defining polynomial
\( x^{18} - 3852 x^{16} - 30736 x^{15} + 6027618 x^{14} + 96122064 x^{13} - 4525454337 x^{12} - 117303932784 x^{11} + 1264320413073 x^{10} + 67489049880064 x^{9} + 319889009391855 x^{8} - 16024771525133136 x^{7} - 266494192085567835 x^{6} - 226336313226170496 x^{5} + 36294104440432333908 x^{4} + 474010864334666524928 x^{3} + 2901079188765510844557 x^{2} + 9136064088352588936944 x + 11952636410206805283781 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60354597469050827144261400747621547431798707274236593031872512=2^{24}\cdot 3^{24}\cdot 7^{4}\cdot 23\cdot 107^{6}\cdot 3520987^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2705.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 107, 3520987$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{12} a^{12} + \frac{1}{4} a^{10} - \frac{1}{3} a^{9} - \frac{1}{4} a^{8} - \frac{1}{12} a^{6} - \frac{1}{4} a^{4} - \frac{1}{3} a^{3} + \frac{1}{4} a^{2} + \frac{1}{12}$, $\frac{1}{12} a^{13} + \frac{1}{4} a^{11} - \frac{1}{3} a^{10} - \frac{1}{4} a^{9} - \frac{1}{12} a^{7} - \frac{1}{4} a^{5} - \frac{1}{3} a^{4} + \frac{1}{4} a^{3} + \frac{1}{12} a$, $\frac{1}{36} a^{14} + \frac{1}{36} a^{12} - \frac{1}{9} a^{11} + \frac{5}{12} a^{10} + \frac{2}{9} a^{9} + \frac{17}{36} a^{8} - \frac{1}{3} a^{7} + \frac{11}{36} a^{6} - \frac{1}{9} a^{5} - \frac{1}{12} a^{4} - \frac{1}{9} a^{3} - \frac{17}{36} a^{2} + \frac{1}{3} a - \frac{7}{18}$, $\frac{1}{72} a^{15} - \frac{1}{72} a^{14} + \frac{1}{72} a^{13} - \frac{1}{36} a^{12} + \frac{19}{72} a^{11} - \frac{17}{36} a^{10} - \frac{1}{24} a^{9} - \frac{1}{36} a^{8} - \frac{13}{72} a^{7} + \frac{1}{4} a^{6} + \frac{1}{72} a^{5} + \frac{13}{36} a^{4} - \frac{25}{72} a^{3} + \frac{1}{36} a^{2} + \frac{5}{36} a - \frac{19}{72}$, $\frac{1}{72} a^{16} - \frac{1}{72} a^{13} - \frac{1}{72} a^{12} - \frac{5}{24} a^{11} - \frac{19}{72} a^{10} - \frac{5}{72} a^{9} - \frac{11}{24} a^{8} + \frac{5}{72} a^{7} - \frac{35}{72} a^{6} + \frac{3}{8} a^{5} - \frac{17}{72} a^{4} - \frac{23}{72} a^{3} + \frac{5}{12} a^{2} - \frac{1}{8} a + \frac{35}{72}$, $\frac{1}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448} a^{17} + \frac{665721393534678420850732419057509656035321854794026937762250055662270317647076857117665922603113879870228981816538694999243}{265074805026865386211798981198986185227999807621911865968049743281118085601454988868215988205366741633968763379322981037416724} a^{16} + \frac{265352769385800336946029011145475874772072276672310458802478360647051936949791759053296226556967345971740163939876145876443}{58905512228192308047066440266441374495111068360424859104011054062470685689212219748492441823414831474215280750960662452759272} a^{15} + \frac{1486581398615597334384240609306093240850487357931764308517598738897347481090180642429316550976581512796324190980301942024389}{132537402513432693105899490599493092613999903810955932984024871640559042800727494434107994102683370816984381689661490518708362} a^{14} - \frac{165984460824578611079148133576610318147254080370539693045738237395984797634225748762012845834124730370874903904167921345905}{14726378057048077011766610066610343623777767090106214776002763515617671422303054937123110455853707868553820187740165613189818} a^{13} + \frac{13875204518069879805019763828642099081752384008841478674034464132908230321135245523964096995378432713803242657607462108156289}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448} a^{12} - \frac{47180560156855926318414143222323060174063519075869934543126690223040147939767344868620175562114498860085328702212667994999347}{132537402513432693105899490599493092613999903810955932984024871640559042800727494434107994102683370816984381689661490518708362} a^{11} + \frac{80317512588558371563452642344036195645710118319145473653962272326014662383289392430545979509943268313501690377646846268986615}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448} a^{10} + \frac{32166874068244689848740122035998601345426344093044997115880837415445390522211953427014503178921469575332433297559309898614355}{66268701256716346552949745299746546306999951905477966492012435820279521400363747217053997051341685408492190844830745259354181} a^{9} - \frac{9754636596365760046267633509581860135413322328610690115553681481615832544035468982064864406624009579198957440613942905805411}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448} a^{8} + \frac{29085120169635844159312529417449314941790186064645648203437053005068664588756184072235487924977759116679288172009488693682905}{132537402513432693105899490599493092613999903810955932984024871640559042800727494434107994102683370816984381689661490518708362} a^{7} + \frac{86013356551096501095814415473156379450554093749655284512897748776222954789942959076307606802630904463008786379446218827732659}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448} a^{6} - \frac{7813344102753271226849817804605904023986283291857245901876827691447641759712311469450931915220797914830358263811400508151979}{132537402513432693105899490599493092613999903810955932984024871640559042800727494434107994102683370816984381689661490518708362} a^{5} + \frac{19424613154712790986716904916050324245829140713700025824285456607020998672304407168540223774564576087780304318100186114154279}{176716536684576924141199320799324123485333205081274577312033162187412057067636659245477325470244494422645842252881987358277816} a^{4} + \frac{44450385305621373193325736314728495391525652618085262684326631093075179463880102739977697154805894362743399115456890984622033}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448} a^{3} + \frac{17701724048728286004774003042051089504936943536316950737696119925816060195038474929336110459607218644972925608958439098697893}{58905512228192308047066440266441374495111068360424859104011054062470685689212219748492441823414831474215280750960662452759272} a^{2} + \frac{127944165122136871385382759825581649601455007970707608487331686279326344184203538698072127865759529585820591318748474958460155}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448} a - \frac{65051286762198755695268279156264835515150758816718679682300782712270592293733413431160427324169644725029686739193211170656107}{530149610053730772423597962397972370455999615243823731936099486562236171202909977736431976410733483267937526758645962074833448}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7991505074050000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 559872 |
| The 174 conjugacy class representatives for t18n903 are not computed |
| Character table for t18n903 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.3.321.1, 6.6.19783872.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.18.64 | $x^{12} + 14 x^{11} + 12 x^{10} + 4 x^{9} + 10 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 16 x - 8$ | $4$ | $3$ | $18$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| $3$ | 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ |
| 3.12.18.12 | $x^{12} + 18 x^{11} + 33 x^{10} - 3 x^{9} - 36 x^{8} - 27 x^{7} + 21 x^{6} - 27 x^{5} - 18 x^{4} + 9 x^{3} - 27 x + 36$ | $6$ | $2$ | $18$ | 12T171 | $[3/2, 3/2, 2, 2]_{2}^{4}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107 | Data not computed | ||||||
| 3520987 | Data not computed | ||||||