Normalized defining polynomial
\( x^{18} - 102 x^{16} + 3844 x^{14} - 71296 x^{12} + 718032 x^{10} - 4067136 x^{8} + 12791552 x^{6} - 20692992 x^{4} + 13788672 x^{2} - 1131008 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(601687078323127839501245339528069120000=2^{27}\cdot 5^{4}\cdot 13^{16}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{448} a^{12} + \frac{1}{112} a^{10} - \frac{1}{112} a^{8} - \frac{1}{28} a^{6} - \frac{3}{28} a^{4} + \frac{1}{7}$, $\frac{1}{448} a^{13} + \frac{1}{112} a^{11} - \frac{1}{112} a^{9} - \frac{1}{28} a^{7} - \frac{3}{28} a^{5} + \frac{1}{7} a$, $\frac{1}{896} a^{14} + \frac{1}{112} a^{10} + \frac{1}{56} a^{6} - \frac{1}{28} a^{4} + \frac{1}{14} a^{2} - \frac{2}{7}$, $\frac{1}{896} a^{15} + \frac{1}{112} a^{11} + \frac{1}{56} a^{7} - \frac{1}{28} a^{5} + \frac{1}{14} a^{3} - \frac{2}{7} a$, $\frac{1}{60502504825966336} a^{16} + \frac{2330143777117}{4321607487569024} a^{14} - \frac{5697304203403}{7562813103245792} a^{12} + \frac{72743683188525}{7562813103245792} a^{10} + \frac{65387412735923}{3781406551622896} a^{8} + \frac{11325278718307}{270100467973064} a^{6} + \frac{6283544693607}{945351637905724} a^{4} + \frac{49376438078484}{236337909476431} a^{2} - \frac{2197638945444}{5028466159073}$, $\frac{1}{60502504825966336} a^{17} + \frac{2330143777117}{4321607487569024} a^{15} - \frac{5697304203403}{7562813103245792} a^{13} + \frac{72743683188525}{7562813103245792} a^{11} + \frac{65387412735923}{3781406551622896} a^{9} + \frac{11325278718307}{270100467973064} a^{7} + \frac{6283544693607}{945351637905724} a^{5} + \frac{49376438078484}{236337909476431} a^{3} - \frac{2197638945444}{5028466159073} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24779055901200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 41472 |
| The 64 conjugacy class representatives for t18n705 are not computed |
| Character table for t18n705 is not computed |
Intermediate fields
| 3.3.169.1, 9.9.45048729067225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | $18$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13 | Data not computed | ||||||
| 47 | Data not computed | ||||||