Normalized defining polynomial
\( x^{18} - 3 x^{17} - 56 x^{16} + 195 x^{15} + 1057 x^{14} - 4277 x^{13} - 8360 x^{12} + 43035 x^{11} + 22847 x^{10} - 215160 x^{9} + 33211 x^{8} + 534308 x^{7} - 267164 x^{6} - 612584 x^{5} + 400750 x^{4} + 264347 x^{3} - 169876 x^{2} - 34901 x + 21211 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59834233322368760002940158203125=5^{9}\cdot 7^{12}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(665=5\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{665}(64,·)$, $\chi_{665}(1,·)$, $\chi_{665}(324,·)$, $\chi_{665}(134,·)$, $\chi_{665}(11,·)$, $\chi_{665}(144,·)$, $\chi_{665}(596,·)$, $\chi_{665}(39,·)$, $\chi_{665}(296,·)$, $\chi_{665}(106,·)$, $\chi_{665}(429,·)$, $\chi_{665}(239,·)$, $\chi_{665}(501,·)$, $\chi_{665}(121,·)$, $\chi_{665}(634,·)$, $\chi_{665}(571,·)$, $\chi_{665}(254,·)$, $\chi_{665}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{748931898040532589943310005571469749} a^{17} + \frac{233087758189870167316483781543566147}{748931898040532589943310005571469749} a^{16} - \frac{103443158809993198415946600167604534}{748931898040532589943310005571469749} a^{15} + \frac{147666749702851401387606920147382427}{748931898040532589943310005571469749} a^{14} - \frac{30847401937341419675933094276601518}{748931898040532589943310005571469749} a^{13} + \frac{279703524954546436329513326143164088}{748931898040532589943310005571469749} a^{12} - \frac{41707906391575413871861373695226823}{748931898040532589943310005571469749} a^{11} - \frac{144782849640098234428635641665311449}{748931898040532589943310005571469749} a^{10} - \frac{185877841282520327257200203632305953}{748931898040532589943310005571469749} a^{9} - \frac{81308884286696341678705157186624198}{748931898040532589943310005571469749} a^{8} + \frac{27713860378431924492342029822945627}{748931898040532589943310005571469749} a^{7} - \frac{329407069986158224281708046412215029}{748931898040532589943310005571469749} a^{6} - \frac{19831589632421791036114847268557954}{748931898040532589943310005571469749} a^{5} + \frac{314774261733195596457584447776775565}{748931898040532589943310005571469749} a^{4} + \frac{20452652778550350517092628379292721}{748931898040532589943310005571469749} a^{3} - \frac{14974597296183812121403574345446362}{748931898040532589943310005571469749} a^{2} + \frac{151345287399713469097034297692785481}{748931898040532589943310005571469749} a + \frac{162382408025814576795308535981173679}{748931898040532589943310005571469749}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7678869702.19 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.361.1, 3.3.17689.2, \(\Q(\zeta_{7})^+\), 3.3.17689.1, 6.6.16290125.1, 6.6.39112590125.1, 6.6.300125.1, 6.6.39112590125.2, 9.9.5534900853769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |