Normalized defining polynomial
\( x^{18} - 9 x^{17} - 5529 x^{16} + 44436 x^{15} + 10292937 x^{14} - 72828903 x^{13} - 8539018588 x^{12} + 52182911757 x^{11} + 3447114469486 x^{10} - 17715656763307 x^{9} - 742287334083178 x^{8} + 3076020274067557 x^{7} + 88069603774193460 x^{6} - 275049865186735271 x^{5} - 5623047621043485557 x^{4} + 11708136094287234244 x^{3} + 176804857217449151273 x^{2} - 182705284937259444809 x - 2071089383551800498025 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(596927111187232576466742898477508785559748046759414357=241^{3}\cdot 1033^{3}\cdot 3301^{3}\cdot 32009^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $971.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $241, 1033, 3301, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{99938616336651673384} a^{14} - \frac{7}{99938616336651673384} a^{13} - \frac{3505080989501211335}{49969308168325836692} a^{12} - \frac{7908336294311300581}{99938616336651673384} a^{11} - \frac{5945843154743118743}{49969308168325836692} a^{10} + \frac{23684679880578796423}{99938616336651673384} a^{9} - \frac{5128887907986611625}{24984654084162918346} a^{8} - \frac{47098955656459625259}{99938616336651673384} a^{7} - \frac{5546760269682091665}{24984654084162918346} a^{6} - \frac{26852019928450907105}{99938616336651673384} a^{5} + \frac{7662282668587751993}{49969308168325836692} a^{4} + \frac{18198169398972038587}{99938616336651673384} a^{3} + \frac{14955970097734071643}{49969308168325836692} a^{2} + \frac{6375089897864987293}{99938616336651673384} a + \frac{48347552486935313843}{99938616336651673384}$, $\frac{1}{99938616336651673384} a^{15} - \frac{7010161979002422719}{99938616336651673384} a^{13} - \frac{7010161979002422579}{99938616336651673384} a^{12} - \frac{17280732201339504861}{99938616336651673384} a^{11} - \frac{9587816117499029287}{99938616336651673384} a^{10} - \frac{4630716972872381615}{99938616336651673384} a^{9} + \frac{9169415593218596009}{99938616336651673384} a^{8} - \frac{2094573495664886629}{99938616336651673384} a^{7} - \frac{32253382974571963649}{99938616336651673384} a^{6} + \frac{27237658511322501019}{99938616336651673384} a^{5} + \frac{25531510422548893105}{99938616336651673384} a^{4} - \frac{42578106685030933373}{99938616336651673384} a^{3} + \frac{15881438592838643527}{99938616336651673384} a^{2} + \frac{21501936801832194101}{49969308168325836692} a + \frac{38617018398592176749}{99938616336651673384}$, $\frac{1}{13763280949222386083474015812746828487849203394358392424919994816} a^{16} - \frac{1}{1720410118652798260434251976593353560981150424294799053114999352} a^{15} - \frac{6668073901726527789684003382769764963738639}{3440820237305596520868503953186707121962300848589598106229998704} a^{14} + \frac{11669129328021423631947005919847088686542627}{860205059326399130217125988296676780490575212147399526557499676} a^{13} + \frac{1323682695755296053153558518955168097607829682367715587790241389}{13763280949222386083474015812746828487849203394358392424919994816} a^{12} - \frac{530227849960291639805761053793025228583676814177645880541158853}{6881640474611193041737007906373414243924601697179196212459997408} a^{11} + \frac{2168824876839238595741064811433119460235043253388876850450406971}{13763280949222386083474015812746828487849203394358392424919994816} a^{10} + \frac{11829805422176297903145615260468570914375266638673039440399867}{6881640474611193041737007906373414243924601697179196212459997408} a^{9} + \frac{85376285145461895148835019456573240904663466120705379463930423}{1058713919170952775651847370211294499065323338027568648070768832} a^{8} - \frac{1241628121267082061229086154571152855202594912689592135455845401}{6881640474611193041737007906373414243924601697179196212459997408} a^{7} + \frac{6514806582659087215934468486147844221508212017229500214545459195}{13763280949222386083474015812746828487849203394358392424919994816} a^{6} - \frac{1952894083331412681146425594259228221681812917915344233259871661}{6881640474611193041737007906373414243924601697179196212459997408} a^{5} + \frac{6847061486732450638526055809881239193047081124240064425922705761}{13763280949222386083474015812746828487849203394358392424919994816} a^{4} + \frac{585435942574785259448901354134573720665840378972138082327673563}{1720410118652798260434251976593353560981150424294799053114999352} a^{3} + \frac{33515325631724994367170882374888713812663751469036676727356333}{132339239896369096956480921276411812383165417253446081008846104} a^{2} + \frac{484353291733010165885064710196710606981565861321671661969215225}{3440820237305596520868503953186707121962300848589598106229998704} a + \frac{4232536609147299482359658422356721071616116770687564652909626325}{13763280949222386083474015812746828487849203394358392424919994816}$, $\frac{1}{13763280949222386083474015812746828487849203394358392424919994816} a^{17} - \frac{6668073901726527789684003382769764963738655}{3440820237305596520868503953186707121962300848589598106229998704} a^{15} - \frac{1667018475431631947421000845692441240934651}{860205059326399130217125988296676780490575212147399526557499676} a^{14} + \frac{1323682695755296054647207072941910322497046440108142939667697645}{13763280949222386083474015812746828487849203394358392424919994816} a^{13} + \frac{1323682695755296051939969068840940039885341066703618364389807999}{6881640474611193041737007906373414243924601697179196212459997408} a^{12} + \frac{566819752085765400585895857118130046820815923725738974251862731}{13763280949222386083474015812746828487849203394358392424919994816} a^{11} - \frac{1635331399137658881738106998567174954032354265574613877447968361}{6881640474611193041737007906373414243924601697179196212459997408} a^{10} + \frac{1299168593645825403385185097102949266390629325787938564077493371}{13763280949222386083474015812746828487849203394358392424919994816} a^{9} - \frac{242881531008660034358169096016051450122395523002510509561462109}{6881640474611193041737007906373414243924601697179196212459997408} a^{8} + \frac{412037591608160319743105825756227026115896808554418472171927595}{13763280949222386083474015812746828487849203394358392424919994816} a^{7} + \frac{20590586165760536511920678025198810614929210875469881311974191}{6881640474611193041737007906373414243924601697179196212459997408} a^{6} + \frac{3127318051874619907131277927227244621836481226311341543604748817}{13763280949222386083474015812746828487849203394358392424919994816} a^{5} + \frac{137714238674010714059487314410599667447079951508251573947595479}{430102529663199565108562994148338390245287606073699763278749838} a^{4} - \frac{42043582147687778938323625829917638052099472009815703267977223}{1720410118652798260434251976593353560981150424294799053114999352} a^{3} - \frac{1146509570132182307914651638793204724890125954592694844315664271}{3440820237305596520868503953186707121962300848589598106229998704} a^{2} + \frac{205812448116594438179576321927745931281966239262850531413948921}{474595894800771933912897096991269947856869082564082497411034304} a - \frac{68488687484696168725971519126662830836759290049432979877872055}{1720410118652798260434251976593353560981150424294799053114999352}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4512402372220000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 48 conjugacy class representatives for t18n521 |
| Character table for t18n521 is not computed |
Intermediate fields
| 3.3.32009.1, 9.9.32795655776729.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 241 | Data not computed | ||||||
| 1033 | Data not computed | ||||||
| 3301 | Data not computed | ||||||
| 32009 | Data not computed | ||||||