Normalized defining polynomial
\( x^{18} - 9 x^{17} - 4713 x^{16} + 37908 x^{15} + 7582845 x^{14} - 53744019 x^{13} - 6048917846 x^{12} + 36993906789 x^{11} + 2700519652990 x^{10} - 13842994500965 x^{9} - 697169842983026 x^{8} + 2872146475884161 x^{7} + 101886839309334295 x^{6} - 315771580417732762 x^{5} - 7801208519486086464 x^{4} + 16132081734514574945 x^{3} + 257580432375126965074 x^{2} - 265699584714103969204 x - 2050201927532681754088 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(596927111187232576466742898477508785559748046759414357=241^{3}\cdot 1033^{3}\cdot 3301^{3}\cdot 32009^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $971.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $241, 1033, 3301, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{99938616336651673384} a^{14} - \frac{7}{99938616336651673384} a^{13} + \frac{7830758266438505101}{24984654084162918346} a^{12} + \frac{11939034278779224435}{99938616336651673384} a^{11} + \frac{48394450344011038223}{99938616336651673384} a^{10} - \frac{2285584769169896332}{12492327042081459173} a^{9} - \frac{29061185015977424493}{99938616336651673384} a^{8} - \frac{42472279295970502557}{99938616336651673384} a^{7} - \frac{9219082960824840823}{99938616336651673384} a^{6} - \frac{15907399446154352211}{49969308168325836692} a^{5} - \frac{45106416859143060387}{99938616336651673384} a^{4} + \frac{29356190305752995377}{99938616336651673384} a^{3} - \frac{6709403015676945015}{24984654084162918346} a^{2} - \frac{18155271090657468419}{99938616336651673384} a - \frac{12068979931656645557}{49969308168325836692}$, $\frac{1}{99938616336651673384} a^{15} + \frac{31323033065754020355}{99938616336651673384} a^{13} + \frac{31323033065754020495}{99938616336651673384} a^{12} + \frac{8007268489703483971}{24984654084162918346} a^{11} + \frac{20660625244763076753}{99938616336651673384} a^{10} + \frac{42823300583811727683}{99938616336651673384} a^{9} - \frac{5752917716813640905}{12492327042081459173} a^{8} - \frac{3354594511331669285}{49969308168325836692} a^{7} + \frac{3590236718569083201}{99938616336651673384} a^{6} + \frac{32005839904651028811}{99938616336651673384} a^{5} + \frac{3356780325426648205}{24984654084162918346} a^{4} - \frac{21221512595740159189}{99938616336651673384} a^{3} - \frac{6141322856308582071}{99938616336651673384} a^{2} + \frac{48652375175387776721}{99938616336651673384} a + \frac{15455756815055154485}{49969308168325836692}$, $\frac{1}{702256939786653110479393024872658462673560548285495410870426432} a^{16} - \frac{1}{87782117473331638809924128109082307834195068535686926358803304} a^{15} + \frac{461484842655205303062886351508781810769809}{702256939786653110479393024872658462673560548285495410870426432} a^{14} - \frac{3230393898586437121440204460561472675388523}{702256939786653110479393024872658462673560548285495410870426432} a^{13} - \frac{620759186169452768313668262714129435297213550318880372211075}{175564234946663277619848256218164615668390137071373852717606608} a^{12} + \frac{14898220468066866481523158986762789025855783194952273713116235}{702256939786653110479393024872658462673560548285495410870426432} a^{11} - \frac{224463310896252513104966389522270731795817786139166766205376611}{702256939786653110479393024872658462673560548285495410870426432} a^{10} + \frac{35436574217166230694310697180465776521774020434986768211183203}{87782117473331638809924128109082307834195068535686926358803304} a^{9} + \frac{1049098186920322100754873459251727813209818076973566005470441}{43891058736665819404962064054541153917097534267843463179401652} a^{8} - \frac{199703541664837935387699902455371531783061129558695668021612581}{702256939786653110479393024872658462673560548285495410870426432} a^{7} + \frac{303769821956951566754463302968557833449608466343551343729912329}{702256939786653110479393024872658462673560548285495410870426432} a^{6} + \frac{3947435104293834454742907936717208595163262748584026585419955}{10972764684166454851240516013635288479274383566960865794850413} a^{5} + \frac{117893302365506164033513559393899064669205233328294728336237737}{702256939786653110479393024872658462673560548285495410870426432} a^{4} - \frac{204450556387202335783534056105354009188435319923590431681816177}{702256939786653110479393024872658462673560548285495410870426432} a^{3} + \frac{277393475818338605727872386725469066286458801855504190270533089}{702256939786653110479393024872658462673560548285495410870426432} a^{2} + \frac{2077767295871878080129215195190578884166081339816407807469551}{21945529368332909702481032027270576958548767133921731589700826} a - \frac{31397300342902082674448842307928457027191972644914779950830995}{175564234946663277619848256218164615668390137071373852717606608}$, $\frac{1}{702256939786653110479393024872658462673560548285495410870426432} a^{17} + \frac{461484842655205303062886351508781810769745}{702256939786653110479393024872658462673560548285495410870426432} a^{15} + \frac{461484842655205303062886351508781810769949}{702256939786653110479393024872658462673560548285495410870426432} a^{14} - \frac{620759186169452774774456059887003678177622471441825722988121}{175564234946663277619848256218164615668390137071373852717606608} a^{13} - \frac{4966073489355622104514225420089352903655050415251898197638165}{702256939786653110479393024872658462673560548285495410870426432} a^{12} - \frac{105277547151717581252781117628168419588971520579548576500446731}{702256939786653110479393024872658462673560548285495410870426432} a^{11} - \frac{1682812716552875598850929515455042450706703579100768159573350}{10972764684166454851240516013635288479274383566960865794850413} a^{10} + \frac{11122218845587786663111470017491372149013297013390249311998297}{43891058736665819404962064054541153917097534267843463179401652} a^{9} - \frac{65418973739036706491076099671150371692204415706079219321396133}{702256939786653110479393024872658462673560548285495410870426432} a^{8} + \frac{110655368211554304611650133070902504532240526444976821297864545}{702256939786653110479393024872658462673560548285495410870426432} a^{7} - \frac{15779167102024312847289945974033729125865705810524149021941247}{87782117473331638809924128109082307834195068535686926358803304} a^{6} + \frac{32209256403990073423703348375134477372114115746830107459975401}{702256939786653110479393024872658462673560548285495410870426432} a^{5} + \frac{36438922750193866005181394173180045491645998417271984137659287}{702256939786653110479393024872658462673560548285495410870426432} a^{4} + \frac{46302904294026140418385987627953918126097339037771558556856537}{702256939786653110479393024872658462673560548285495410870426432} a^{3} + \frac{22358192581831201618616863178984458320537921607709042424001381}{87782117473331638809924128109082307834195068535686926358803304} a^{2} - \frac{73984428353765163166027326033896024108952903968038532990386339}{175564234946663277619848256218164615668390137071373852717606608} a - \frac{9451770974569172971967810280657880068643205510993048361130169}{21945529368332909702481032027270576958548767133921731589700826}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1744118081300000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 48 conjugacy class representatives for t18n521 |
| Character table for t18n521 is not computed |
Intermediate fields
| 3.3.32009.2, 9.9.32795655776729.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 241 | Data not computed | ||||||
| 1033 | Data not computed | ||||||
| 3301 | Data not computed | ||||||
| 32009 | Data not computed | ||||||