Normalized defining polynomial
\( x^{18} - 4 x^{17} - 66 x^{16} + 216 x^{15} + 1834 x^{14} - 4388 x^{13} - 27644 x^{12} + 41344 x^{11} + 240608 x^{10} - 171108 x^{9} - 1197004 x^{8} + 121428 x^{7} + 3186428 x^{6} + 1072936 x^{5} - 3857520 x^{4} - 2467112 x^{3} + 1240320 x^{2} + 1082912 x + 99896 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5763065516728982926781941659467776=2^{18}\cdot 17^{9}\cdot 293^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{4} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{5741719753229030496393346889969984617980} a^{17} + \frac{237596054628430938433185942017150993293}{5741719753229030496393346889969984617980} a^{16} - \frac{79802849810440423082950340972321718053}{1148343950645806099278669377993996923596} a^{15} - \frac{700735381250309786833287642993281686289}{5741719753229030496393346889969984617980} a^{14} + \frac{153067676027053036051525489271224493487}{1913906584409676832131115629989994872660} a^{13} - \frac{557821208288067061778696289684283176251}{5741719753229030496393346889969984617980} a^{12} - \frac{124977936453425761598798522658386045181}{956953292204838416065557814994997436330} a^{11} - \frac{280308856824322893329439753043322578907}{1435429938307257624098336722492496154495} a^{10} + \frac{2605441906918073360296035982987815161}{92608383116597266070860433709193300290} a^{9} + \frac{271542470684708356506793294248754953194}{1435429938307257624098336722492496154495} a^{8} + \frac{22866592576995163712601100105086946143}{956953292204838416065557814994997436330} a^{7} + \frac{212898557855755309117476437227171519119}{956953292204838416065557814994997436330} a^{6} + \frac{487836149701814746391207374880974356689}{1435429938307257624098336722492496154495} a^{5} - \frac{235229319126542591301213094481481168523}{1435429938307257624098336722492496154495} a^{4} + \frac{593228008794185647751222060829431826709}{1435429938307257624098336722492496154495} a^{3} + \frac{20737118269058707023044775122114940401}{95695329220483841606555781499499743633} a^{2} - \frac{23226506440234568263568792360665531145}{95695329220483841606555781499499743633} a + \frac{183959498237724670892980491272842487543}{1435429938307257624098336722492496154495}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80103059316.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 20 conjugacy class representatives for t18n273 |
| Character table for t18n273 |
Intermediate fields
| 9.9.7909146121024.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 293 | Data not computed | ||||||