Normalized defining polynomial
\( x^{18} - 99 x^{16} - 34 x^{15} + 3936 x^{14} + 2910 x^{13} - 80911 x^{12} - 91218 x^{11} + 908568 x^{10} + 1336398 x^{9} - 5362239 x^{8} - 9346950 x^{7} + 14757756 x^{6} + 28021338 x^{5} - 17858889 x^{4} - 32457542 x^{3} + 9855147 x^{2} + 10514490 x - 1319078 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5703857685299429613102692113176969216=2^{14}\cdot 3^{21}\cdot 11^{12}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{5} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{1}{4} a^{7} - \frac{3}{16} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{5}{16} a^{2} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{16} a^{13} - \frac{3}{16} a^{9} + \frac{1}{8} a^{8} + \frac{5}{16} a^{7} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{5}{16} a^{3} - \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} + \frac{1}{32} a^{10} + \frac{1}{16} a^{9} + \frac{3}{8} a^{7} - \frac{5}{32} a^{6} - \frac{3}{8} a^{5} - \frac{9}{32} a^{4} + \frac{7}{16} a^{3} + \frac{11}{32} a^{2} - \frac{7}{16} a + \frac{1}{16}$, $\frac{1}{160} a^{15} - \frac{1}{32} a^{13} + \frac{1}{40} a^{12} + \frac{1}{160} a^{11} + \frac{3}{80} a^{10} - \frac{1}{4} a^{9} + \frac{7}{80} a^{8} - \frac{49}{160} a^{7} + \frac{17}{80} a^{6} - \frac{73}{160} a^{5} - \frac{3}{80} a^{4} - \frac{49}{160} a^{3} - \frac{1}{2} a^{2} - \frac{29}{80} a + \frac{19}{40}$, $\frac{1}{603520} a^{16} + \frac{5}{15088} a^{15} + \frac{743}{60352} a^{14} - \frac{7053}{301760} a^{13} + \frac{4663}{301760} a^{12} + \frac{5449}{150880} a^{11} + \frac{13579}{120704} a^{10} - \frac{55803}{301760} a^{9} + \frac{105151}{603520} a^{8} + \frac{63}{4715} a^{7} - \frac{29751}{75440} a^{6} - \frac{22803}{301760} a^{5} - \frac{60681}{150880} a^{4} + \frac{4353}{30176} a^{3} - \frac{225493}{603520} a^{2} + \frac{137723}{301760} a - \frac{4409}{60352}$, $\frac{1}{10604905034572566970900030214267098880} a^{17} - \frac{567464527483899102284848388555}{2120981006914513394180006042853419776} a^{16} - \frac{335738789890937414158655052585613}{757493216755183355064287872447649920} a^{15} + \frac{1947026393834952412558516919371653}{1325613129321570871362503776783387360} a^{14} + \frac{5377182466772102324824355692256901}{662806564660785435681251888391693680} a^{13} - \frac{87450174310061313118684982385898461}{5302452517286283485450015107133549440} a^{12} + \frac{371019049599534685474940446346433743}{10604905034572566970900030214267098880} a^{11} + \frac{421568323710937549314514116019219637}{10604905034572566970900030214267098880} a^{10} + \frac{784908369779249693842977212647382841}{10604905034572566970900030214267098880} a^{9} + \frac{2123438227382040768128425952520478951}{10604905034572566970900030214267098880} a^{8} - \frac{7939240806859214298051611253675179}{530245251728628348545001510713354944} a^{7} + \frac{66315393188852236993801585341769169}{757493216755183355064287872447649920} a^{6} + \frac{818455558899495984711048642216619901}{5302452517286283485450015107133549440} a^{5} + \frac{931049490758792711428769592606061403}{2651226258643141742725007553566774720} a^{4} - \frac{234821280751494520070312680503402185}{2120981006914513394180006042853419776} a^{3} - \frac{4081988479454891197347501981078913339}{10604905034572566970900030214267098880} a^{2} + \frac{441669225924841494144990668949205979}{2651226258643141742725007553566774720} a + \frac{524074448161377329116033143485967239}{5302452517286283485450015107133549440}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30071457300200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T155):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.1573.1, 6.6.3473957916.1, 9.9.4902949660999104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.12.9.1 | $x^{12} - 104 x^{8} - 45968 x^{4} - 2847312$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |