Normalized defining polynomial
\( x^{18} - x^{17} - 25 x^{16} + 20 x^{15} + 232 x^{14} - 137 x^{13} - 1018 x^{12} + 403 x^{11} + 2291 x^{10} - 566 x^{9} - 2742 x^{8} + 387 x^{7} + 1711 x^{6} - 131 x^{5} - 505 x^{4} + 30 x^{3} + 55 x^{2} - 5 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(563362135874260093126953125=5^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(95=5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{95}(64,·)$, $\chi_{95}(1,·)$, $\chi_{95}(66,·)$, $\chi_{95}(4,·)$, $\chi_{95}(6,·)$, $\chi_{95}(9,·)$, $\chi_{95}(74,·)$, $\chi_{95}(11,·)$, $\chi_{95}(16,·)$, $\chi_{95}(81,·)$, $\chi_{95}(24,·)$, $\chi_{95}(26,·)$, $\chi_{95}(36,·)$, $\chi_{95}(39,·)$, $\chi_{95}(44,·)$, $\chi_{95}(49,·)$, $\chi_{95}(54,·)$, $\chi_{95}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{4130024167189} a^{17} + \frac{920978222672}{4130024167189} a^{16} + \frac{606794707934}{4130024167189} a^{15} - \frac{492036479265}{4130024167189} a^{14} + \frac{629306648510}{4130024167189} a^{13} - \frac{1857958233227}{4130024167189} a^{12} - \frac{550922843041}{4130024167189} a^{11} - \frac{1554275344905}{4130024167189} a^{10} - \frac{1498768582140}{4130024167189} a^{9} + \frac{657444201028}{4130024167189} a^{8} + \frac{846780531398}{4130024167189} a^{7} - \frac{1207865625684}{4130024167189} a^{6} + \frac{446543373733}{4130024167189} a^{5} + \frac{491195884715}{4130024167189} a^{4} + \frac{670693194266}{4130024167189} a^{3} + \frac{1281532435586}{4130024167189} a^{2} + \frac{20048467778}{4130024167189} a + \frac{983742514991}{4130024167189}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26179751.3516 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.361.1, 6.6.16290125.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | $18$ | $18$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
| 19.9.8.8 | $x^{9} - 19$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ | |