Normalized defining polynomial
\( x^{18} - 9 x^{17} - 75 x^{16} + 768 x^{15} + 1986 x^{14} - 25806 x^{13} - 19822 x^{12} + 438816 x^{11} - 14037 x^{10} - 4078547 x^{9} + 1648491 x^{8} + 21086784 x^{7} - 11912402 x^{6} - 58701558 x^{5} + 36211158 x^{4} + 78699796 x^{3} - 48626967 x^{2} - 36169521 x + 22115221 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56290847976736302998762533947799425024=2^{12}\cdot 3^{33}\cdot 47^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{24} a^{15} - \frac{1}{8} a^{13} - \frac{1}{24} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} + \frac{1}{24} a^{6} - \frac{1}{8} a^{5} - \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{11}{24}$, $\frac{1}{528} a^{16} - \frac{1}{264} a^{15} + \frac{1}{88} a^{14} - \frac{5}{66} a^{13} + \frac{2}{33} a^{12} + \frac{9}{88} a^{11} - \frac{3}{44} a^{10} + \frac{7}{88} a^{9} - \frac{1}{176} a^{8} - \frac{1}{264} a^{7} - \frac{23}{132} a^{6} - \frac{21}{88} a^{5} + \frac{9}{22} a^{4} - \frac{1}{2} a^{3} - \frac{13}{88} a^{2} - \frac{103}{264} a - \frac{23}{528}$, $\frac{1}{385866985135724564594702719844661980195083242672} a^{17} + \frac{5053746928049927159285048438328518083680037}{35078816830520414963154792713151089108643931152} a^{16} - \frac{1104994227479431126088547260469529395324994963}{192933492567862282297351359922330990097541621336} a^{15} + \frac{2120279078774497359844612618109421429304900091}{96466746283931141148675679961165495048770810668} a^{14} - \frac{240091826106132086751078493419638570599028059}{48233373141965570574337839980582747524385405334} a^{13} + \frac{1629746200337936734043882055341131929499828859}{24116686570982785287168919990291373762192702667} a^{12} + \frac{3655261075862260034277951747022682616248899633}{32155582094643713716225226653721831682923603556} a^{11} - \frac{1899503961321618238498501730042904955883257711}{21437054729762475810816817769147887788615735704} a^{10} - \frac{2246475988958272793576858545002101214266186357}{128622328378574854864900906614887326731694414224} a^{9} - \frac{18079150615753473638984302756323086934338144159}{385866985135724564594702719844661980195083242672} a^{8} - \frac{11012389927983799524726626098029942764784129775}{96466746283931141148675679961165495048770810668} a^{7} - \frac{11611724078743287901290338743103994547911173551}{192933492567862282297351359922330990097541621336} a^{6} - \frac{4448933184721847360050339170190353645688703903}{10718527364881237905408408884573943894307867852} a^{5} - \frac{24207938870180774861796453308269530581297820239}{64311164189287427432450453307443663365847207112} a^{4} + \frac{23816842155250529971561650235755216795590269109}{64311164189287427432450453307443663365847207112} a^{3} + \frac{73875605523601309406323905112585921103757992093}{192933492567862282297351359922330990097541621336} a^{2} - \frac{170909676312356144175567300967958169220450929811}{385866985135724564594702719844661980195083242672} a + \frac{1692837201482998623660540627489216393419976415}{20308788691353924452352774728666420010267539088}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15891448025500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3:S_4$ |
| Character table for $C_3:S_4$ |
Intermediate fields
| 3.3.11421.1, 3.3.45684.2, 3.3.45684.1, 3.3.564.1, 6.6.44851536.1, 9.9.13443473060864064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.12.22.67 | $x^{12} + 99 x^{11} + 117 x^{10} - 114 x^{9} - 81 x^{8} + 9 x^{7} - 15 x^{6} + 54 x^{5} - 108 x^{4} + 45 x^{3} - 81 x^{2} - 108 x - 72$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||