Normalized defining polynomial
\( x^{18} - 3 x^{17} - 635 x^{16} + 637 x^{15} + 147470 x^{14} + 31278 x^{13} - 15388414 x^{12} - 4948990 x^{11} + 811072595 x^{10} - 33481138 x^{9} - 21732949914 x^{8} + 10719756413 x^{7} + 274397510025 x^{6} - 231330970625 x^{5} - 1350644250998 x^{4} + 1050009163838 x^{3} + 2453632857591 x^{2} - 1197940138849 x - 1164062910163 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53056553186191280403749586075084940824853751509=7^{12}\cdot 19^{12}\cdot 229^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $394.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{37} a^{15} + \frac{15}{37} a^{14} + \frac{18}{37} a^{13} + \frac{8}{37} a^{12} + \frac{18}{37} a^{11} + \frac{16}{37} a^{10} - \frac{7}{37} a^{9} + \frac{9}{37} a^{8} + \frac{16}{37} a^{7} - \frac{18}{37} a^{6} - \frac{3}{37} a^{5} + \frac{3}{37} a^{4} + \frac{18}{37} a^{3} - \frac{14}{37} a^{2} - \frac{7}{37} a - \frac{5}{37}$, $\frac{1}{481} a^{16} - \frac{4}{481} a^{15} - \frac{119}{481} a^{14} + \frac{73}{481} a^{13} + \frac{162}{481} a^{12} + \frac{229}{481} a^{11} + \frac{59}{481} a^{10} - \frac{9}{37} a^{9} + \frac{30}{481} a^{8} + \frac{85}{481} a^{7} + \frac{9}{37} a^{6} - \frac{236}{481} a^{5} - \frac{113}{481} a^{4} - \frac{171}{481} a^{3} - \frac{3}{13} a^{2} - \frac{57}{481} a + \frac{132}{481}$, $\frac{1}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{17} + \frac{97313469853227573716582614833457808256305067192379773802501241428014480171383451200130205226179268}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{16} - \frac{1322530298845726823300579262634120537094782785247907795379006767575319390866318444959014421717749973}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{15} - \frac{49117150999870578677193481099406166326514948556762036688504682108906435736988277862181941834055275131}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{14} + \frac{7501974021005723657097893881632825649344095302376249569053260460018466678358625786274760038830489618}{23952688427139403239521013085107652022473490161043939362317460810889988775232461904701354594812452681} a^{13} + \frac{41020668712759290410373802466903662946187063323830603386557717117978356451733402038024310090603623270}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{12} + \frac{72411137518943043548419170597551739191051750657917695279856392127099222493798990427506088706787760901}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{11} + \frac{24784447363799233240940522315020454272067686700380839405664701330864840349496174914804830138696980444}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{10} - \frac{97591107177057897022691959352965752468608360192802286514576115413104924651726815509808208725290811444}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{9} - \frac{33950954906340428314909634877328963485406168101024966885616787252869160429931474583114759503113069320}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{8} - \frac{144056387570188466817126111828018036625701231931277505177562228248350890061514773232307785410088950962}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{7} - \frac{148949898886773336829265809674362123297415096429552106191335033823506508758558570418483592023993435889}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{6} - \frac{2232221984532165455499184931834130876450830038548295490485326992736761900326008513569969831610747463}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{5} - \frac{111327686542266728098417949993377094886140679217032152873192160909708465762842571128738794139369036598}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{4} - \frac{34015936101049073418175412649089094171394177198300428084266182278859546815223714842984940344023546100}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{3} + \frac{122078750539740528223097727059121523063459020636756758569246992289128480566464915721662268112660810909}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a^{2} - \frac{16156883622378745116381053601290306833886401257219289089478153668050107091985273963169486688824790317}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853} a + \frac{70663985701919140595152190599952663835690798545346218197062646862278589700711616512864970257865571934}{311384949552812242113773170106399476292155372093571211710126990541569854078022004761117609732561884853}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39968959368600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_9$ (as 18T19):
| A solvable group of order 54 |
| The 18 conjugacy class representatives for $C_3\times D_9$ |
| Character table for $C_3\times D_9$ |
Intermediate fields
| \(\Q(\sqrt{229}) \), 3.3.229.1 x3, 6.6.12008989.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $19$ | 19.9.6.3 | $x^{9} - 361 x^{3} + 27436$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ |
| 19.9.6.3 | $x^{9} - 361 x^{3} + 27436$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| 229 | Data not computed | ||||||