Normalized defining polynomial
\( x^{18} - 48 x^{16} - 8 x^{15} + 837 x^{14} + 192 x^{13} - 6966 x^{12} - 1866 x^{11} + 30984 x^{10} + 9044 x^{9} - 76548 x^{8} - 22602 x^{7} + 104332 x^{6} + 27684 x^{5} - 75591 x^{4} - 14864 x^{3} + 26814 x^{2} + 2700 x - 3527 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(524682375772545974113841184768=2^{27}\cdot 3^{24}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(504=2^{3}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(193,·)$, $\chi_{504}(457,·)$, $\chi_{504}(205,·)$, $\chi_{504}(337,·)$, $\chi_{504}(277,·)$, $\chi_{504}(25,·)$, $\chi_{504}(37,·)$, $\chi_{504}(289,·)$, $\chi_{504}(421,·)$, $\chi_{504}(169,·)$, $\chi_{504}(109,·)$, $\chi_{504}(445,·)$, $\chi_{504}(373,·)$, $\chi_{504}(361,·)$, $\chi_{504}(121,·)$, $\chi_{504}(253,·)$, $\chi_{504}(85,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{7} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{8} + \frac{1}{4} a$, $\frac{1}{2032} a^{16} - \frac{69}{1016} a^{15} + \frac{13}{2032} a^{14} + \frac{159}{508} a^{13} - \frac{231}{1016} a^{12} - \frac{15}{254} a^{11} - \frac{133}{508} a^{10} + \frac{259}{1016} a^{9} + \frac{7}{254} a^{8} + \frac{485}{1016} a^{7} + \frac{38}{127} a^{6} - \frac{23}{127} a^{5} + \frac{195}{508} a^{4} - \frac{245}{508} a^{3} - \frac{867}{2032} a^{2} - \frac{251}{1016} a - \frac{353}{2032}$, $\frac{1}{41145483054823023938747632} a^{17} + \frac{247365765127271087268}{2571592690926438996171727} a^{16} - \frac{1258726957549265437257359}{41145483054823023938747632} a^{15} - \frac{2079588196904441074178955}{20572741527411511969373816} a^{14} + \frac{4953235426010305690515917}{20572741527411511969373816} a^{13} + \frac{4764532846095394740801605}{10286370763705755984686908} a^{12} - \frac{1478119920411530747687133}{10286370763705755984686908} a^{11} + \frac{9168635601328843193364159}{20572741527411511969373816} a^{10} - \frac{1265735475250236457594899}{10286370763705755984686908} a^{9} + \frac{1372726514884865314794445}{20572741527411511969373816} a^{8} - \frac{3112237955562757349375705}{10286370763705755984686908} a^{7} + \frac{864319186937130727506188}{2571592690926438996171727} a^{6} + \frac{446182597450028967850783}{10286370763705755984686908} a^{5} - \frac{944681278569248523596311}{10286370763705755984686908} a^{4} - \frac{18951033074667130430214251}{41145483054823023938747632} a^{3} + \frac{496185060293696464205815}{10286370763705755984686908} a^{2} - \frac{56375217672307116664965}{41145483054823023938747632} a + \frac{8965210133965361976509369}{20572741527411511969373816}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1222675333.26 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{7})^+\), 6.6.3359232.1, 6.6.8065516032.1, 6.6.8065516032.2, 6.6.1229312.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |