Normalized defining polynomial
\( x^{18} - 204 x^{16} + 16830 x^{14} - 725390 x^{12} + 17608192 x^{10} - 242461463 x^{8} + 1830195673 x^{6} - 7048170148 x^{4} + 11899821517 x^{2} - 6975757441 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(522206502690334026627487091405357056=2^{18}\cdot 17^{10}\cdot 994046201^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 994046201$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{17} a^{4}$, $\frac{1}{17} a^{5}$, $\frac{1}{289} a^{6} + \frac{4}{17} a^{2}$, $\frac{1}{289} a^{7} + \frac{4}{17} a^{3}$, $\frac{1}{4913} a^{8} + \frac{4}{289} a^{4} + \frac{3}{17} a^{2}$, $\frac{1}{4913} a^{9} + \frac{4}{289} a^{5} + \frac{3}{17} a^{3}$, $\frac{1}{83521} a^{10} + \frac{4}{4913} a^{6} + \frac{3}{289} a^{4} + \frac{5}{17} a^{2}$, $\frac{1}{83521} a^{11} + \frac{4}{4913} a^{7} + \frac{3}{289} a^{5} + \frac{5}{17} a^{3}$, $\frac{1}{1419857} a^{12} + \frac{4}{83521} a^{8} + \frac{3}{4913} a^{6} + \frac{5}{289} a^{4} - \frac{6}{17} a^{2}$, $\frac{1}{1419857} a^{13} + \frac{4}{83521} a^{9} + \frac{3}{4913} a^{7} + \frac{5}{289} a^{5} - \frac{6}{17} a^{3}$, $\frac{1}{24137569} a^{14} + \frac{4}{1419857} a^{10} + \frac{3}{83521} a^{8} + \frac{5}{4913} a^{6} - \frac{6}{289} a^{4} + \frac{5}{17} a^{2}$, $\frac{1}{24137569} a^{15} + \frac{4}{1419857} a^{11} + \frac{3}{83521} a^{9} + \frac{5}{4913} a^{7} - \frac{6}{289} a^{5} + \frac{5}{17} a^{3}$, $\frac{1}{2195722239223} a^{16} - \frac{1977}{129160131719} a^{14} + \frac{633}{129160131719} a^{12} + \frac{1599}{446920871} a^{10} + \frac{2671}{446920871} a^{8} + \frac{40721}{26289463} a^{6} - \frac{28728}{1546439} a^{4} - \frac{24226}{90967} a^{2} + \frac{1623}{5351}$, $\frac{1}{2195722239223} a^{17} - \frac{1977}{129160131719} a^{15} + \frac{633}{129160131719} a^{13} + \frac{1599}{446920871} a^{11} + \frac{2671}{446920871} a^{9} + \frac{40721}{26289463} a^{7} - \frac{28728}{1546439} a^{5} - \frac{24226}{90967} a^{3} + \frac{1623}{5351} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 540628022619 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 92897280 |
| The 150 conjugacy class representatives for t18n964 are not computed |
| Character table for t18n964 is not computed |
Intermediate fields
| 9.9.16898785417.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.14.7.1 | $x^{14} - 9826 x^{8} + 24137569 x^{2} - 3693048057$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 994046201 | Data not computed | ||||||